Mostrar el registro sencillo del recurso

dc.coverage.spatialGeneración de conocimiento
dc.creatorVICTOR MANUEL BAUTISTA ANCONA
dc.creatorMARTHA RZEDOWSKI CALDERON
dc.creatorGABRIEL DANIEL VILLA SALVADOR
dc.date2013-04-19
dc.date.accessioned2018-10-04T15:07:56Z
dc.date.available2018-10-04T15:07:56Z
dc.identifierhttp://dx.doi.org/10.1142/S1793042113500243
dc.identifier.urihttp://redi.uady.mx:8080/handle/123456789/474
dc.description.abstractWe give a construction of genus fields for Kummer cyclic l–extensions of rational congruence function fields, l a prime number. First we find this genus field for a field contained in a cyclotomic function field using Leopoldt’s construction by means of Dirichlet characters and the Hilbert class field defined by Rosen. The general case follows from this. This generalizes the result obtained by Peng for a cyclic extension of degree l.
dc.languageeng
dc.publisherInternational Journal of Number Theory
dc.relationcitation:0
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0
dc.sourceurn:issn:1793-0421
dc.subjectinfo:eu-repo/classification/cti/1
dc.subjectCIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA
dc.subjectinfo:eu-repo/classification/cti/7
dc.subjectINGENIERÍA Y TECNOLOGÍA
dc.subjectGenus fields
dc.subjectCongruence function fields
dc.subjectGlobal fields
dc.subjectDirichlet characters
dc.subjectCyclotomic function fields
dc.subjectCyclic extensions
dc.subjectKummer extensions
dc.titleGenus fields of cyclic l-extensions of rational function fields
dc.typeinfo:eu-repo/semantics/article


Archivos en el recurso

Thumbnail

Este recurso aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del recurso