Genus fields of cyclic l-extensions of rational function fields
Autor: VICTOR MANUEL BAUTISTA ANCONA; MARTHA RZEDOWSKI CALDERON; GABRIEL DANIEL VILLA SALVADOR;
Colecciones: Artículos [523]
URI:
Metadatos: Mostrar el registro completo del recurso
Resumen
We give a construction of genus fields for Kummer cyclic l–extensions of rational congruence function fields, l a prime number. First we find this genus field for a field contained in a cyclotomic function field using Leopoldt’s construction by means of Dirichlet characters and the Hilbert class field defined by Rosen. The general case follows from this. This generalizes the result obtained by Peng for a cyclic extension of degree l.
Archivos en el recurso
Recursos relacionados
Mostrando recursos relacionados por Título, autor o tema.
-
Variational method for integrating radial gradient field
RICARDO LEGARDA SAENZ -
A remark on generic tameness preservation under base field extension
JESUS EFREN PEREZ TERRAZAS -
Imaginary quadratic function fields with ideal class group of prime exponent
VICTOR MANUEL BAUTISTA ANCONA; JAVIER ARTURO DIAZ VARGAS; JOSE ALEJANDRO LARA RODRIGUEZFor K, an imaginary quadratic extension of a rational function field over a finite field, in which the infinite place ramifies, we give necessary conditions (illustrating for exponent three) for the ideal class group to ...