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Abstract

We study some properties of almost simple transcendental field ex-
tensions in order to analyze the endomorphisms ring of algebraically
bounded Λ−modules where Λ is a semigenerically tame finite-dimensional
k−algebra, k a perfect field.
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1. Introduction

The notion of algebraically bounded module was introduced in [5] in order
to study the representation type of finite dimensional algebras over perfect
fields.

Here we deal with the ring of endomorphisms of such modules, and the
main result is the following:
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Corollary 1.1. Let k be a perfect field, K an algebraic closure of k, and Λ
a finite-dimensional k−algebra. Assume that ΛK is tame and G is an algebrai-
cally bounded Λ−module. Let us denote EG = EndΛ (G)op , DG = EG/rad (EG) ,
by ZG the center of DG and by AG the algebraic elements of ZG over k. Then
AG/k is a finite field extension and ZG = k (t, w) , where t is transcenden-
tal over k and k (t, w) /k (t) is a separable finite field extension. Also we ha-
ve EG = F ⊕ E ′ as k−vector spaces, F a subring of EG and F ∼= k (t) as
k−algebras, and G is finitely generated as right F−module.

To achieve the previous result we study some properties of almost sim-
ple transcendental field extensions (see 3.1), through classical results of Field
Theory.

In a forthcoming paper we will use the previous corollary and the results
of [1] to produce bimodules that parametrize finite dimensional Λ−modules,
when Λ is a semigenerically tame finite-dimensional k−algebra, with k a perfect
field.

2. Basic Features

Lemma 2.1. Let E/k be a field extension, f ∈ k [x] − {0} and g ∈ E [x]
such that fg ∈ k [x] , then g ∈ k [x] .

Proof: By the division algorithm there is an identity fg = fq + r such that
q, r ∈ k [x] and grad (f) > grad (r) ; then the identity (g − q) f = r in E [x]
implies r = 0 and g = q. �

Proposition 2.2. Let E/k be a field extension. Then the canonical homo-
morphism of E−algebras ψ : E ⊗k k (x) ∼= E (x) is injective. If E/k is an
algebraic field extension then ψ is surjective.

Proof: It is easy to verify the existence of an homomorphism of E−algebras

ψ : E ⊗k k (x)→ E (x) determined by ψ
(
e⊗ f

g

)
= ef

g
, for e ∈ E, f, g ∈ k [x] ,

g 6= 0.
The restriction ψ|E⊗kk[x] : E ⊗k k [x] → E [x] is an isomorphism, and this

implies that ψ is injective (use clearing denominators).
Now assume E/k is an algebraic field extension and let be h ∈ E [x] with

grad (h) = m > 0, and E ′ a splitting field of h, i.e. h = uh1 · · ·hm where
u ∈ E − {0} and hi = x− ri, ri ∈ E ′, for each i.

Let hih
′
i ∈ k [x] be the minimal polynomial of ri over k, and so hh′ ∈ k [x] ,

where h′ = u−1h′1 · · ·h′m. By lemma 2.1 we get h′ ∈ E [x] . Using the identity

1
h

= h′

hh′
we can verify that any element of E (x) has the form

n∑
i=0

eix
i

g
, where

ei ∈ E for each i and g ∈ k [x]− {0}, and so ψ is surjective. �
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Remark 2.3. y ⊗ 1− 1⊗ x is not a unit in k (y)⊗k k (x) .

Proposition 2.4. Let E/k be an algebraic field extension, then E (x) /k (x)
is an algebraic field extension.

Proof: Note that if e ∈ E is a root of the polynomial
m∑
j=0

cjx
j ∈ k [x] then

exi

g
is a root of the polynomial

m∑
j=0

(
cj

gj

xij

)
yj ∈ k (x) [y] . From the proof of the

proposition 2.2 we know that any element of E (x) has the form
n∑
i=0

eix
i

g
, where

ei ∈ E for each i and g ∈ k [x] − {0}. Then, the statement holds because the
sum of algebraic elements is algebraic. �

Corollary 2.5. Let E/k be an algebraic field extension. Then
E ⊗k k (x1, . . . , xn) ∼= E (x1, . . . , xn) as E−algebras.

Proof: By induction over n. The inductive step follows by propositions 2.2,
2.4 and the identity (k (x1, . . . , xm−1)) (xm) = k (x1, . . . , xm) , and so we have

E ⊗k k (x1, . . . , xm) ∼= E ⊗k k (x1, . . . , xm−1)⊗k(x1,...,xm−1) k (x1, . . . , xm)
∼= E (x1, . . . , xm−1)⊗k(x1,...,xm−1) (k (x1, . . . , xm−1)) (xm)
∼= E (x1, . . . , xm) .

�

3. Properties of ast Field Extensions

Definition 3.1. Let E/k a field extension. We call E an almost simple
transcendental field extension of k, or ast, if there exists an algebraic field

extension L/k, and n ∈ N, such that E⊗k L ∼=
n

×
i=1
L (x) as L−algebras. In this

case we say that L realizes the ast property of E/k.

Applying proposition 2.2 we get the following result:

Lemma 3.2. Assume that L realizes the ast property of E/k. If L′/L is an
algebraic field extension then L′ realizes the ast property of E/k.

The next claim is theorem 7 of section 4 of chapter 4 of [4] (or see [2]).

Theorem 3.3. Let t be transcendental over k. Then t is algebraic over k (s)

for s ∈ k (t) − k. Moreover, if s = f(t)
g(t)

with f(x) and g(x) relative primes in

k[x] then
[k (t) : k (s)] = max{deg (f) , deg (g)}

and the polynomial f(x)− sg(x) is irreducible in k (s) [x].
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Lemma 3.4. Let α be algebraic over k and L/k a field extension, L con-
taining a splitting field of mα,k (x) ∈ k [x] , the minimal (monic) polynomial of
α over k.

i) If α is not separable over k, then L⊗k k (α) contains nilpotent elements.

ii) If α is separable over k, then L ⊗k k (α) ∼=
n

×
i=1
L as L-algebras, where

n = deg (mα,k (x)) .

Proof: Recalling that k (α) ∼= k [x] / 〈mα,k (x)〉 , we have

L⊗k k (α) ∼= L⊗k (k [x] / 〈mα,k (x)〉) ∼= L [x] / 〈mα,k (x)〉 .

In L [x] there is a factorization mα,k (x) =
m∏
i=1

(x− αi)ni . By the Chinese

Remainder Theorem, we get L⊗k k (α) ∼=
m

×
i=1
L [x] / 〈(x− αi)ni〉 , and so we get

the first claim because if α is not separable then there are repeated roots. If α
is separable then ni = 1 for each i, following the final claim. �

Theorem 3.5. Let E/k be an ast field extension, and A the intermediate
field of the algebraic elements of E over k, then A/k is a separable finite (then
simple) field extension. Moreover, if L realizes the ast property of E/k, i.e.

E⊗k L ∼=
n

×
i=1
L (x) , then [A : k] ≤ n. In particular, E is transcendental over k.

Proof: Let be α ∈ A− k and mα,k (x) ∈ k [x] its minimal polynomial.
By lemma 3.2 we can assume that L contains a splitting field of mα,k (x) .

Observe that 0 is the only nilpotent element of
n

×
i=1
L (x) ; it follows, by the

lemma 3.4, that α is separable, and so A/k is separable.
The lemma 3.4 also provides a set of orthogonal idempotents associated to

mα,k (x) , as many idempotents as its degree, then deg (mα,k (x)) ≤ n.
Now let be γ ∈ A − k such that mγ,k (x) has maximal degree: k (γ, α) is

a separable finite field extension of k then, by the Theorem of the Primitive
Element, there exists δ ∈ A such that k (γ, α) = k (δ) . By maximality of the
degree of mγ,k (x) we get k (γ) = k (δ) , so α ∈ k (γ) . It follows A = k (γ) .

Finally E 6= A : otherwise E ⊗k L would have finite dimension over L. �

Remark 3.6. Notice that theorem 3.5 can be proved without the hypothesis
L/k algebraic.

Theorem 3.7. Let be E/k be an ast field extension. If t ∈ E is transcen-
dental over k then E/k (t) is a finite field extension. As a consequence, the
transcendence degree of E/k is 1.
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Proof: Let us assume that L realizes the ast property of E/k, i.e.

E⊗kL ∼=
n

×
i=1
L (x) . Let t ∈ E be as in the statement and consider a k (t)−basis

{bj}j∈J of E.

Applying proposition 2.2 we have an injective composition of homomorp-

hisms of L−algebras θ : L (t) ∼= k (t)⊗k L
ι⊗1−→ E ⊗k L, where ι : k (t) → E is

the canonical inclusion, and homomorphisms of L−algebras

ϑi : L (t)
θ−→ E ⊗k L ∼=

n

×
i=1
L (x)

πi−→ L (x) ,

where πi is the canonical projection corresponding to i.

Notice that 1 ⊗ 1 ∈ k (t) ⊗k L implies that ϑi 6= 0 for each i, and so ϑi is
injective for i ∈ {1, . . . , n} .

It is easy to verify that {bj ⊗ 1}j∈J is a L (t)−basis of E ⊗k L for the
structure of vector space induced by θ.

Notice that t /∈ L since L/k is algebraic. Then by theorem 3.3, for each i,
L (x) is finite dimensional over the image of ϑi, and so J has to be finite. �

Proof of corollary 1.1: By lemma 2.17 and theorem 3.2 of [5] we have
that ZG/k is an ast field extension, then applying theorems 3.5 and 3.7 we get
that AG/k is a finite field extension, ZG/k is of transcendence degree one and,
for t ∈ ZG transcendental over k, that [ZG : k (t)] <∞.

Since k is perfect there exists a separating transcendency basis for ZG (see
corollary of page 166 of [4]), i.e., we can choose t0 transcendental over k such
that ZG/k (t0) is a separable field extension. By the Theorem of the Primitive
Element ZG/k (t0) is an algebraic simple extension.

Now let π : EG → DG be the canonical epimorphism and T ∈ EG such that
π (T ) = t0. Then π induces an isomorphism of k−algebras between k [T ] and
k [t0] . By lemma 2.5.5 of [6] each element of k [T ] − {0} is invertible in EG,
and so there is a subring F of EG that we can identify with k (T ) ∼= k (t0) .

For the final claim we recall that generic modules are finitely generated
over their endomorphisms rings and that DG is finitely generated over ZG (see
[5]). �

Remark 3.8. With the hypothesis of corollary 1.1 it can be shown, applying
Wedderburn’s Principal Theorem, that EG = A⊕ B as k−vector spaces, A a
subring of EG, where A ∼= AG as k−algebras.
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