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RESUMEN 

 

El uso de consorcios microbianos en el tratamiento de aguas residuales se ha 

posicionado como una alternativa viable entre los diferentes procesos existentes en la 

actualidad. Sin embargo, esta opción aún presenta desafíos debido a la complejidad 

existente en las interacciones microbianas, obteniendo diferentes resultados a los 

esperados, y, por tanto, un sistema con baja confiabilidad. Actualmente existen 

herramientas que permiten diseñar modelos y realizar inferencias del metabolismo de 

los miembros de comunidades microbianas usando enfoques basados en biología de 

sistemas y biología cuantitativa.  

En el presente trabajo se analizó el metagenoma de un consorcio nitrificante para el 

tratamiento de aguas residuales. Seguidamente, se diseñaron modelos metabólicos para 

los principales miembros del consorcio utilizando estrategias semiautomáticas. Los 

modelos fueron refinados para aumentar la calidad de las asociaciones genéticas y la 

robustez en las predicciones. Seis modelos fueron reconstruidos por homología usando 

como templados modelos de microorganismos previamente validados de la base de 

datos BiGG. Los templados fueron escogidos basados en comparaciones por ARN 16S, 

similitud proteómica y fisiológica. Los modelos fueron desarrollados combinando 

algoritmos de módulos COBRA, RAVEN y algoritmos diseñados en este trabajo. Los 

parámetros óptimos para la reconstrucción semiautomática fueron calculados en el 

presente trabajo. Los modelos resultantes fueron optimizados a nivel genético y 

bioquímico a partir de revisión manual y de algoritmos semiautomáticos. Los modelos de 

seis microorganismos (Rhodopseudomonas palustris BisA53, Thauera sp. MZ1T, 

Acinetobacter oleivorans DR1, Aromatoleum aromaticum EbN1, Dechloromonas 

aromatica RCB y Nitrosomonas europaea ATCC 19718) pertenecientes al consorcio 

permitieron comprender mejor los procesos asociados con la fijación de carbono-

nitrógeno, nitrificación-desnitrificación, y procesos fundamentales en el tratamiento de 

aguas residuales. Por último, las herramientas semiautomáticas fueron aplicadas en dos 

proyectos diferentes: el modelo de Azotobacter vinelandii (iDT1278) y los modelos de las 

cepas de Liberibacter. El modelo iDT1278 fue validado con datos de crecimiento en más 

de 300 fuentes de carbono y nitrógeno, obteniendo una precisión mayor al 90% de 

predicción. Con respecto a los modelos de Liberibacter, se evaluó la precisión en las 

predicciones de crecimiento utilizando diferentes fuentes de carbono y las relaciones 

genéticas fueron validadas a partir de información transcriptómica. 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

ABSTRACT 

 

The use of microbial consortia for wastewater treatments has been positioned as a viable 

alternative among the different processes that currently exist. However, this option still 

presents challenges due to the complexity of the microbial interactions, obtaining different 

results than expected, and, therefore, a system with low reliability. Currently, there are 

tools to design models and make inferences of the metabolism of members of microbial 

communities using approaches based on systems biology and quantitative biology. 

In the present work, the metagenome of a nitrifying microbial consortium for wastewater 

treatment was analyzed. From this information, metabolic models were designed for the 

main members of the consortium using semi-automatic strategies. The resulting models 

were refined to increase the quality of genetic associations and robustness in phenotypic 

predictions. Six metabolic models were homologically reconstructed using previously 

validated micro-organism models from the BiGG database. Templates were chosen 

based on comparisons by 16S RNA, BLAST between proteomes and physiological 

similarities. The models were developed combining algorithms from COBRA, RAVEN 

toolboxes and algorithms designed in this work. The optimal parameters for the semi-

automatic reconstruction were calculated from information of different databases and 

experimental data. The resulting models were optimized at genetic and biochemical 

levels based on manual curation and semi-automatic algorithms. The models of the six 

microorganisms (Rhodopseudomonas palustris BisA53, Thauera sp. MZ1T, 

Acinetobacter oleivorans DR1, Aromatoleum aromaticum EbN1, Dechloromonas 

aromatica RCB and Nitrosomonas europaea ATCC 19718) belonging to the nitrifying 

microbial consortium will help to comprehend the metabolic processes associated with 

the carbon and nitrogen fixation, nitrification, denitrification, etc., fundamental in the 

wastewater treatment. Finally, the semi-automatic tools and strategies for reconstruction 

and validation developed were applied in two different projects: Azotobacter vinelandii DJ 

model (iDT1278) and the multiple metabolic models for Liberibacter microorganisms. 

iDT1278 was validated with growth data on more than 200 carbon sources and 95 

nitrogen sources, obtaining an accuracy greater than 90% of prediction. Regarding the 

Liberibacter strains, the accuracy in the predictions from the models were validated 

through different carbon sources and the genes associations were evaluated using 

transcriptomic data.  

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

ÍNDICE 

 

1. INTRODUCCIÓN .................................................................................................. 1 

2. HIPÓTESIS ........................................................................................................... 3 

3. JUSTIFICACIÓN ................................................................................................... 5 

4. OBJETIVO GENERAL Y PARTICULARES .......................................................... 7 

5. REFERENCIAS .................................................................................................... 9 

6. PRIMER ARTÍCULO DE INVESTIGACIÓN .........................................................11 

7. SEGUNDO ARTÍCULO DE INVESTIGACIÓN .....................................................43 

8. CONCLUSIONES ................................................................................................77 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

file:///C:/Users/jsusx/Downloads/tesis%20Diego/Tesis%20tercer%20semestre%20(1).docx%23_Toc505305887
file:///C:/Users/jsusx/Downloads/tesis%20Diego/Tesis%20tercer%20semestre%20(1).docx%23_Toc505305887
file:///C:/Users/jsusx/Downloads/tesis%20Diego/Tesis%20tercer%20semestre%20(1).docx%23_Toc505305887
file:///C:/Users/jsusx/Downloads/tesis%20Diego/Tesis%20tercer%20semestre%20(1).docx%23_Toc505305887
file:///C:/Users/jsusx/Downloads/tesis%20Diego/Tesis%20tercer%20semestre%20(1).docx%23_Toc505305887
file:///C:/Users/jsusx/Downloads/tesis%20Diego/Tesis%20tercer%20semestre%20(1).docx%23_Toc505305887


 

 

 

 



 

1 
 

INTRODUCCIÓN 

 

El uso de consorcios microbianos para el tratamiento de aguas residuales se ha 

posicionado como una alternativa competitiva entre los diferentes procesos existentes 

(Monica et al., 2011; Zhu et al., 2019). Los sistemas biológicos son amigables con el 

medio ambiente y permiten la remoción de una gran cantidad de diferentes compuestos 

presentes en las aguas, aprovechando el metabolismo y las interacciones de los 

microorganismos pertenecientes a la comunidad microbiana (Zhang et al., 2017; Zuñiga 

et al., 2017; Zuñiga et al., 2019). Sin embargo, esta opción aún presenta algunos retos 

debido a diferentes factores físicos (temperatura, pH, oxígeno disuelto, etc.) y factores 

biológicos (ejemplo; complejidad que existe en las interacciones dentro de las 

comunidades microbianas) (Nadiri et al., 2018; Sulaiman et al., 2014), que generan 

variabilidad entre los resultados obtenidos experimentalmente y predichos, por tanto, 

estos sistemas biológicos registran una confiabilidad limitada (Perez-Garcia et al., 2016). 

Actualmente han surgido diferentes herramientas y tecnologías computacionales que 

permiten comprender y describir las capacidades y el potencial de los microorganismos 

individualmente y en comunidades microbianas (Jhu & Zhang, 2015). Una de las 

principales herramientas para la comprensión de estos sistemas biológicos es el 

modelamiento matemático del metabolismo desde una perspectiva en biología de 

sistemas (Thiele & Palsson, 2010), cuyo enfoque se basa en la predicción de los 

fenotipos (crecimiento celular, flujos metabólicos, rutas metabólicas activas, análisis 

genético, etc.) a partir de la información genómica y bioquímica (O’Brien et al., 2013). 

Dentro de las alternativas para diseñar modelos metabólicos, las estrategias de 

modelamiento semiautomático se han posicionado como una de las opciones más 

viables debido a que permiten diseñar modelos de alta precisión en tiempos 

relativamente cortos (meses) (Zuñiga et al., 2016; Tec-Campos et al., 2020).  

En este trabajo se diseñaron algoritmos y estrategias semiautomáticas para construir 

modelos matemáticos del metabolismo que permitan analizar con alta precisión y 

sensibilidad los genotipos y fenotipos de los microorganismos pertenecientes a un 

consorcio microbiano nitrificante desde un enfoque en biología de sistemas. A partir de 

estos modelos se realizaron inferencias y predicciones certeras de las rutas metabólicas 

de los principales miembros del consorcio microbiano bajo diferentes condiciones 

experimentales específicas para cada microorganismo. Por último, las herramientas y 

estrategias semiautomáticas fueron evaluadas en el microorganismo diazótrofo 

Azotobacter vinelandii DJ (iDT1278) y en el conjunto de cepas de Liberibacter. Se 

evaluaron para iDT1278 incialmente 38 fuentes de carbono y nitrógeno molecular a partir 

de datos de la literatura. A partir de datos obtenidos en el presente trabajo, se evaluaron 

190 fuentes de carbono y 95 fuentes de nitrógeno para medir el crecimiento en estas 

condiciones. Además, se evaluaron datos de fluxómica recopilados en la literatura para 

la fijación de nitrógeno y producción de biopolímeros utilizando glucosa como fuente de 
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carbono.  Con respecto a las cepas de Liberibacter, se validaron diferentes fuentes de 

carbono como carbohidratos, ácidos orgánicos y aminoácidos para determinar la 

capacidad de crecimiento en diferentes condiciones. Las asociaciones genéticas de 

estos modelos fueron evaluadas a partir de información transcriptómica. 
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HIPÓTESIS 

 

La biología de sistemas permite obtener modelos a escala del genoma con una alta 

precisión. El uso de estas herramientas y estrategias computacionales resulta en la 

construcción y diseño de modelos metabólicos desde un enfoque semiautomático. Los 

modelos metabólicos permitirán realizar predicciones fenotípicas de crecimiento y 

entender la distribución de flujos metabólicos en microorganismos participantes en un 

consorcio microbiano nitrificante (bacterias fijadoras de nitrógeno, amonio oxidantes, 

desnitrificantes, oxidantes de compuestos orgánicos, etc.) para el tratamiento de aguas 

residuales. 
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JUSTIFICACIÓN 

 

Los sistemas biológicos permiten la remoción parcial o total de una gran variedad de 

compuestos presentes en las aguas residuales. Sin embargo, existen dificultades en el 

control y manipulación de las condiciones de cultivo debido a la complejidad de las 

interacciones microbianas, al realizar modificaciones químicas o físicas. Entre las 

alternativas para su análisis y comprensión se encuentra el modelado basado en 

restricciones. A pesar de que existen algunas plataformas automatizadas (KBase, Model 

SEED), estas acarrean grandes problemas durante el proceso de reconstrucción de los 

modelos metabólicos (Fritzemeier et al., 2017), por tanto, surge la necesidad de construir 

herramientas que permitan construir con rapidez y confiabilidad modelos de 

comunidades microbianas y de esta manera poder elucidar el comportamiento de los 

microorganismos bajo diferentes condiciones de aguas residuales. En este trabajo se 

pretende desarrollar algoritmos que permitan la construcción de modelos individuales y 

de comunidad, presentando una nueva alternativa que permita generar modelos en un 

tiempo menor a las estrategias manuales, evitando la adición de bucles energéticos 

(EGCs por sus siglas en inglés) en el proceso de construcción. Específicamente, se 

pretende analizar procesos relacionados con el tratamiento de aguas residuales 

sintéticas, principalmente bajo condiciones nitrificantes y la presencia de compuestos 

orgánicos identificados como contaminantes, cuyos experimentos se han desarrollado y 

estudiado previamente por nuestro equipo de trabajo De esta forma se abarca un 

enfoque poco estudiado en la modelación de comunidades microbianas aplicado al 

tratamiento de aguas residuales, ya que los trabajos de modelos de consorcios 

microbianos principalmente se enfocan en el estudio del microbioma (Pérez-García et 

al., 2016; Zuñiga et al., 2017), estableciendo las condiciones adecuadas para la 

proliferación y funcionamiento de los microorganismos que tienen mayor participación 

dentro de la comunidad, optimizando in silico los parámetros del proceso. El modelo de 

comunidad resultante permitirá validar la información experimental previamente obtenida 

por medio de un consorcio microbiano nitrificante, y de esta manera poder elucidar el 

comportamiento y la interacción de los microorganismos integrantes (bacterias fijadoras 

de nitrógeno, amonio oxidantes, desnitrificantes, oxidantes de compuestos orgánicos, 

etc.) del consorcio microbiano nitrificante utilizando la información fisiológica y molecular 

obtenida en trabajos previamente realizados por el grupo. 
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OBJETIVOS 

 

Objetivo general: 

• Reconstruir y validar modelos metabólicos a escala del genoma de miembros de 

una comunidad microbiana nitrificante presente en aguas residuales, 

representando el metabolismo de cada miembro utilizando métodos y principios 

de biología de sistemas  

 

Objetivos específicos: 

• Desarrollar modelos metabólicos individuales de los microorganismos 

identificados en el metagenoma del consorcio nitrificante (SRR1801934) 

utilizando como herramientas complementarias las cajas de herramientas 

COBRA y RAVEN 

 

• Validar la exactitud y precisión de los modelos metabólicos individuales a partir 
de la información presente en la literatura  

 

• Evaluar in silico las capacidades metabólicas de cada uno de los 
microorganismos modelables para intercambiar metabolitos  

• Identificar la participación in silico de los microorganismos modelables bajo 

condiciones experimentales de tratamiento de aguas residuales sintéticas 

previamente obtenidas por el grupo del Dr. Zepeda 
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Abstract 

 

Nitrogen fixation is an important metabolic process carried out by microorganisms, which 

converts molecular nitrogen into inorganic nitrogenous compounds such as ammonia 

(NH3). These nitrogenous compounds are crucial for biogeochemical cycles and for the 

synthesis of essential biomolecules, i.e. nucleic acids, amino acids and proteins. 

Azotobacter vinelandii is a bacterial non-photosynthetic model organism to study aerobic 

nitrogen fixation (diazotrophy) and hydrogen production. Moreover, the diazotroph can 

produce biopolymers like alginate and polyhydroxybutyrate (PHB) that have important 

industrial applications. However, many metabolic processes such as partitioning of 

carbon and nitrogen metabolism in A. vinelandii remain unknown to date. 

Genome-scale metabolic models (M-models) represent reliable tools to unravel and 

optimize metabolic functions at genome-scale. M-models are mathematical 

representations that contain information about genes, reactions, metabolites and their 

associations. M-models can simulate optimal reaction fluxes under a wide variety of 

conditions using experimentally determined constraints. Here we report on the 

development of a M-model of the wild type bacteria A. vinelandii DJ (iDT1278) which 

consists of 2,003 metabolites, 2,469 reactions, and 1,278 genes. We validated the model 

using high-throughput phenotypic and physiological data, testing 180 carbon sources and 

95 nitrogen sources. iDT1278 was able to achieve an accuracy of 89% and 91% for 

growth with carbon sources and nitrogen source, respectively. This comprehensive M-

model will help to comprehend metabolic processes associated with nitrogen fixation, 

ammonium assimilation, and production of organic nitrogen in an environmentally 

important microorganism.  
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1. Introduction 

 

Azotobacter vinelandii is a gram-negative soil bacterium capable of converting 

atmospheric nitrogen gas (N2) into soluble ammonia as well as into other important 

nitrogenous compounds (Gyurján et al., 1995; Howard and Rees, 1996). Azotobacter and 

related Azospirillium are estimated to fix up to 10-30% of the total nitrogen in the 

rhizosphere (Cleveland et al., 1999). Nitrogen fixation can be carried out under ambient 

conditions by any of the three highly specialized metal-dependent nitrogenases, referred 

to as molybdenum nitrogenase, vanadium nitrogenase, and iron-only nitrogenase 

(Setubal and Almeida, 2015; Sippel et al., 2017). Nitrogenases produce high 

concentrations of fixed ammonium, which is excreted and serves as essential nutrient for 

other organisms (Ambrosio et al., 2017). However, the activity of these enzymes is highly 

sensitive to molecular oxygen and energetically costly. Diazotrophs, such as A. vinelandii 

have developed specific strategies to protect the nitrogenase complex in diazotrophic 

conditions (Setubal and Almeida, 2015). One of the most studied mechanisms for 

nitrogenase protection is alginate biosynthesis. Alginate is transported to the extracellular 

space where it works as a barrier that decreases oxygen diffusion into the cytoplasm and 

thus maintains high functionality of oxygen-sensitive nitrogenases in anoxic 

environments (García et al., 2018; Pacheco-Leyva et al., 2016).  

Alginate is of great industrial value because of its use as biocompatible and 

biodegradable exopolysaccharide. This polymer is used as gel-film-stabilizing, -

thickening, or -forming agent in the food and pharmaceutical industry (Remminghorst and 

Rehm, 2006). Besides alginate bioproduction, A. vinelandii produces another attractive 

commercial polymer, i.e. polyhydroxybutyrate (PHB) (Yoneyama et al., 2015). PHB is 

synthetized by this microorganism under high carbon/nitrogen ratios as a carbon and 

energy reserve in the form of cysts (Stevenson and Socolofsky, 1966). Both biopolymers 

can be produced in elevated concentrations, representing 30-70% of the dry biomass 

(Pacheco-Leyva et al., 2016; Yoneyama et al., 2015).  

vinelandii has been shown to grow under a broad range of heterotrophic conditions and 

is able to metabolize, different sugars, alcohols, and organic acids as well as nitrogen-

containing compounds (Nagai et al., 1972; Quiroz-Rocha et al., 2017; Sahoo et al., 2014; 

Shawky et al., 1987). Despite this metabolic versatility to use different carbon and 

nitrogen sources, several of the internal metabolic processes regarding carbon and 

nitrogen partitioning (division and distribution of an element into metabolic, structural or 

storage pools) in A. vinelandii remain unknown. Today there are five fully sequenced 

genomes available for A. vinelandii strains (e.g. A. vinelandii CA, DJ, CA6, DSM 279, and 

NBRC13581) (Noar et al., 2015; Setubal et al., 2009; Setubal and Almeida, 2015), 

enabling a comprehensive functional characterization of Azotobacter metabolism at 

genome-scale.  



 

16 
 

To comprehend the metabolic capabilities of Azotobacter vinelandii DJ we used a 

systems biology approach, which offers tools to predict the organism behavior based on 

mathematical representations of biological data. M-models can be reconstructed using 

semi-automated tools that generate a draft model. This draft model is further curated 

manually to increase its quality. To date, only two core M-models of Azotobacter 

vinelandii are available that contain a reduced number of metabolic reactions. These core 

reactions are in general related to nitrogen fixation or PHB and alginate production, 

disregarding most of the central metabolism of the microorganism (e.g. TCA cycle, lipid 

metabolism and some amino acids synthesis) (García et al., 2018; Inomura et al., 2018). 

Here we have developed a M-model for Azotobacter vinelandii DJ to contextualize 

metabolic processes associated with nitrogen fixation, ammonium assimilation, and 

production of organic nitrogen on genome-scale. Our model was successfully validated 

using high-throughput phenotypic data and physiological data.  
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2. Material and Methods 

 

2.1 Draft model generation 

The draft model of A. vinelandii DJ was generated using The COBRA (Heirendt et al., 

2019) and The RAVEN (Agren et al., 2013) Toolboxes. The proteome sequence was 

obtained from PATRIC database (Genome ID: 322710.5) and was used as input 

sequence to reconstruct the draft model based on protein homology. We selected five 

reference models as templates after alignment of the complete genome sequences of A. 

vinelandii DJ with all bacteria with available models in the BiGG Database (King et al., 

2016). Templates included Escherichia coli str. K-12 substr. MG1655, model iML1515 

(Monk et al., 2017), Klebsiella pneumoniae subsp. Pneumoniae MGH 78578, model 

iYL1228 (Liao et al., 2011), Geobacter metallireducens GS-15, model iAF987 (Feist et 

al., 2014), Clostridium ljungdahlii DSM 13528, model iHN637 (Nagarajan et al., 2013), 

and Methanosarcina barkeri str. Fusaro, model iAF692 (Feist et al., 2006). Template 

models contained reactions associated with nitrogen fixation, H2 production, acetate 

consumption, amino acids catabolism and sugar degradation (Fig. 2). The generated 

draft model also contained genes (exogenous genes) from template models, which were 

later removed during the manual curation step. 

2.2 Model Refinement 

2.2.1 Manual Curation 

We used PATRIC (Wattam et al., 2017) to identify essential genes for A. vinelandii DJ in 

the final model. We only extracted those genes that had a given enzyme commission 

(EC) number that could be used to obtain the GPR (gene-protein reaction) associations. 

The final list of reactions with EC number and gene association not previously present in 

the model were balanced and added to the model before analyzing GPR associations.   

Model refinement included two major steps: manual curation/review of the GPR 

associations and gap-filling by adding new metabolic reactions in the model. In the first 

step of manual curation, we determined sequence similarity among A. vinelandii DJ 

proteins and the exogenous proteins in the GPRs to identify A. vinelandii (AVIN) genes 

closely related to the exogenous proteins. We identified proteins based on BLASTp 

criteria of >= 40% identity, e-value <=1e-4, and query coverage >=85%. A second step 

of manual curation was performed based on protein function, type of metabolic reaction, 

and GPR associations. Then all the GPR associations were manually curated to catalyze 

biological reactions that they were associated with. PATRIC essential genes previously 

identified were added in this step of manual curation. Remaining reactions with mixed 

AVIN and exogenous genes in the GPR association were manually curated in order to 

remove the genes that did not belong to A. vinelandii. Reactions with exclusively 

exogenous GPR associations were identified through previous manual curation steps. 
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Afterwards, Flux Balance Analysis (FBA) was performed to identify which of these 

reactions carry any flux under experimental conditions (Orth et al., 2010). From these 

evaluated reactions, those with no flux and exogenous GPR associations were removed 

from the model.   

2.2.3 Gap-filling 

Gap analysis was performed in order to identify the metabolites disconnected in the 

model. These metabolites were classified depending on the number of reactions present 

in the model or their capability to be consumed, produced, or both. Disconnected 

reactions were manually curated using information from different bioinformatic databases 

(e.g. KEGG, Biocyc). From these results, gap-filling was used to connect pathways 

through the data retrieved. A second step of gap-filling was accomplished to connect the 

metabolites from the medium conditions retrieved using literature information (Wong and 

Maier, 1985) through algorithms to identify the reactions involved in the carbon source 

assimilation. A total of 38 carbon sources were used under nitrogen fixation and 

ammonium assimilation conditions. Complementary, experimental data were generated 

using Biolog plates to test different carbon and nitrogen sources. This was employed to 

improve the quality of model predictions under a wide variety of conditions. A set of 190 

carbon sources and 95 nitrogen sources were used to connect the networks properly. 

Subsequently, the GPR associations were verified for each reaction added during the 

gap-filling to maintain the quality of the model. Those reactions with no gene information 

and literature validation were conserved as orphan reactions.  

2.2.3 Final Quality Control and Quality Analysis 

Final quality check was performed by a person who did not perform the manual curation 

to assess the quality of the data. We performed in-silico GPR simulations to verify if the 

GPR associations are correctly assigned using the COBRA Toolbox algorithms. Next, we 

performed Mass Balance simulations on the model to check for unbalanced reactions 

added during the model refinement. Ultimately, the final model was tested looking for 

ATP, NADH, and NADPH free energy production, removing exchange reactions, and 

calculating their accumulation.   

2.3 Constraints and Growth simulations  

Experimental data from the literature were retrieved to calculate the initial medium 

constraints. For each growth condition, the carbon, nitrogen, and hydrogen fluxes were 

initially determined depending on every value obtained from the literature. The constraints 

related to mineral compounds and exchange reactions are summarized in Table S1. 

Initially, a set of six different conditions were used to measure the accuracy of the model. 

The carbon sources verified in this stage of validation were carbohydrates under nitrogen 

fixation or ammonium assimilation conditions. The simulation results were compared to 

this set of experimental values to identify the quality in the model predictions. 

Subsequently, 38 carbon sources under nitrogen fixation and H2 consumption conditions 
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from the literature (Wong and Maier, 1985) were used to test and increase the quality of 

the model. The uptake rates were estimated from the experimental conditions and set for 

all the carbon sources; nitrogen and H2 uptake rates were not fixed to a specific value 

according to the experimental conditions. Finally, model benchmarking was performed 

for 190 carbon sources (Biolog plates PM1 and PM2) and 95 nitrogen sources (Biolog 

plates PM3) to validate model predictions. Biolog microplates experiments to test carbon 

and nitrogen assimilation were performed in the present work, measuring the growth rate 

values in the plate reader for 96 h. For carbon sources evaluation, ammonium 

assimilation was not fixed to a specific value (non-diazotroph conditions). The 

experimental results from Biolog plates were matched with data retrieved from the 

literature to determine and evaluate model precision during the simulations. During the 

nitrogen condition simulations, pyruvate was used as the unique carbon source. 

Statistical parameters were calculated according to the comparison between the 

metabolic predictions and the experimental values. The model accuracy from the Biolog 

plates results was compared with the in-silico predictions of the A. vinelandii model from 

CarveMe to identify the quality of the model simulations of the present work. The alginate 

production capability of the model was tested using four different carbon sources 

(carbohydrates) from the literature (Revin et al., 2018).The carbon compound uptake 

rates were calculated according to the experimental values. The simulations were 

performed initially setting ammonium as unique nitrogen source and subsequently 

molecular nitrogen was established as the unique nitrogen source. Furthermore, the 

predicted values were compared to determine which conditions allow a higher alginate 

production rate. For polyhydroxybutyrate (PHB) production, the metabolic internal fluxes 

for the principal pathways related to the PHB synthesis were calculated (glycolysis, 

pentose phosphate pathway, Entner-Doudorrff pathway, and TCA cycle) and compared 

with fluxomic data determined by Wu et al. (2019). In silico predictions were performed 

through FBA, using The COBRA Toolbox and the Gurobi Optimizer v.8.0.1 solver (Gurobi 

Optimization) for MATLAB (MathWorks). Percent error between experimental values and 

in silico results were calculated to obtain model accuracy.  

2.4 Carbon and nitrogen partitioning analysis  

The growth results from the Biolog plates experiments were used to determine the carbon 

and nitrogen distribution across the metabolism. The internal fluxes for all the reactions 

of the model were calculated in-silico for all the carbon sources (PM1 and PM2) 

experiments. The reactions were grouped in general subsystems that represented the 

complete metabolism of A. vinelandii DJ. Subsequently, an average flux per subsystem 

was calculated using the flux values of all the reactions belonging to the subsystem. This 

procedure was performed to calculate the carbon and nitrogen distribution in each 

general subsystem under diazotrophic and non-diazotrophic conditions. Ultimately, the 

carbon and nitrogen distributions (the grouped average fluxes per subsystem) were 

compared through a linear correlation analysis in order to determine how the fluxes 

change through the experimental conditions for carbon sources set in the Biolog plates. 
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High linear correlation coefficients I indicate a similar distribution of a specific subsystem 

(above 0.9), while low coefficients suggest different carbon or nitrogen distributions when 

comparing diazotroph and non-diazotroph conditions.  
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3 Results  

3.1 Metabolic network reconstruction of A. vinelandii DJ  

We used a semiautomatic approach to reconstruct the M-model of A. vinelandii DJ (Fig. 

1). This approach has been previously applied for the reconstruction of M-models (Zuñiga 

et al., 2016). First, a draft model of A. vinelandii DJ was reconstructed using the genome 

annotation from PATRIC (Genome ID: 322710.5). Five manually curated and validated 

M-Models were used as protein homology templates: Escherichia coli str. K-12 substr. 

MG1655 (Monk et al., 2017), Klebsiella pneumoniae subsp. Pneumoniae MGH 78578 

(Liao et al., 2011), Geobacter metallireducens GS-15 (Feist et al., 2014), Clostridium 

ljungdahlii DSM 13528 (Nagarajan et al., 2013), and Methanosarcina barkeri str. Fusaro 

(Feist et al., 2006). The RAVEN and COBRA Toolboxes (Agren et al., 2013; Heirendt et 

al., 2019) were used to generate the draft reconstruction. Each reaction in the draft model 

was evaluated for energy (ATP, NADH and NADPH accumulation) and mass balances 

as part of the quality control tests to guarantee model functionality and accuracy. 

Reactions associated with template genes were conserved in the first draft model to 

ensure model connectivity as well as the model’s capability to perform simulations. 

Nitrogen fixation and hydrogen consumption reactions were imported from the M-model 

templates. The resulting draft model contained 2,432 metabolic reactions and 1,918 

metabolites divided into three different compartments (cytoplasm, periplasm, and 

extracellular space).  

 

 

Fig. 1 Workflow used to reconstruct a metabolic model of A. vinelandii DJ. A draft model 
was created from five template models present in BiGG (Escherichia coli str. K-12 substr. 
MG1655, Klebsiella pneumoniae subsp. Pneumoniae MGH 78578, Geobacter 
metallireducens GS-15, Clostridium ljungdahlii DSM 13528 and Methanosarcina barkeri 
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str. Fusaro). The RAVEN toolbox for MATLAB was used to create the draft model from 
stoichiometric data. The initial draft model contained 2,432 reactions, 1,918 metabolites, 
and 1532 genes. The iterative process of model refinement included manual curation, 
gap-filling and curation using experimental data. The resultant final model contained A. 
vinelandii specific metabolic processes such as nitrogen fixation, and production of 
alginate and PHB. The final model, containing 2,469 reactions, 2003 metabolites, and 
1278 genes, predicted with 94% accuracy. 

 

3.1.1 Model Refinement 

Model refinement was performed using two principal steps: manual curation and gap 

filling. Every gene-protein-reaction (GPR) association was verified using multiple 

databases (e.g. KEGG, Biocyc, BRENDA, and MetaNetX) and available information from 

the literature. Manual curation was based on protein sequence similarity. The genes 

annotated in the GPR associations were aligned to protein sequences of A. vinelandii. 

Sequences, which passed the BLASTp parameters (see Methods), were assigned 

functionality based on information in the bioinformatics databases. The assigned genes 

in the GPR rules were replaced with the A. vinelandii genes (AVIN).  

The original draft model consisted of 1,532 genes (Fig. 2A) corresponding to 934 AVIN 

genes and 598 genes from the template. At the end of the second manual curation, the 

AVIN genes increased to 1,233 and the total number of template genes was 102. 

Intuitively, as the level of curation increases the number of genes from template models 

decreases. When the genes in the model were curated by functionality, the number of 

genes from template models was zero.  

3.1.2 Gap filling 

After the manual curation, the total number of reactions and metabolites in the model was 

2,416 and 1,976, respectively. We used literature information and experimental data from 

the Biolog plates results (PM1 and PM2 for carbon sources and PM3 for nitrogen sources) 

to add or remove reactions in the model. Each reaction added to the model in this step 

was manually reviewed to maintain concordance in the GPR associations. Overall, a total 

of 51 reactions and 29 metabolites (mostly reactions related to carbohydrate and amino 

acids catabolism) were added to the model during the gap filling process. The reactions 

added to the model were mainly transport and interconversion reactions to connect the 

carbon or nitrogen sources with intracellular metabolites from the model.  
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3.1.3 Model properties 

The Azotobacter vinelandii DJ metabolic model (iDT1278) consists of 2,003 metabolites, 

2,469 reactions and 1,278 genes (around 26% of all annotated coding genes in the 

genome). Specific details about the reactions and metabolites from the model are 

summarized in Table S1. iDT1278 was validated using experimental data under nitrogen 

fixation (diazotroph) and ammonium assimilation (non-diazotroph) conditions. iDT1278 

contains all the reactions and genes involved in nitrogen fixation, PHB, and alginate 

biosynthesis (Fig. 2B). 

The properties of iDT1278 are shown in Fig. 2. Most of the reactions in the model belong 

to amino acid metabolism, lipid metabolism, and cofactor and vitamins metabolism (60% 

of total reactions of the model). Specific metabolic capabilities of A. vinelandii DJ such as 

nitrogen fixation (nitrogen metabolism), PHB and alginate production (glycan and 

secondary metabolites biosynthesis) represent around 3% of the metabolic reactions. 

Template models used during the reconstruction share 208 reactions with iDT1278. Most 

of the reactions (a total of 2139 reactions) were taken from the first template (Escherichia 

coli K12 substr. MG1555, iML1515). Nitrogen fixation and H2 consumption pathways 

were obtained from the templates iHN637(Clostridium ljungdahlii DSM 13528) and 

iAF987 (Geobacter metallireducens GS-15). iDT1278 shares 208 reactions among all the 

template models (Fig. 2C) which are related to core metabolic pathways (TCA cycle, 

oxidative phosphorylation, amino acids metabolism, etc.). Table 1 shows a comparison 

of the properties of the different metabolic models reconstructed for A. vinelandii. As a 

result, iDT1278 represents, to our knowledge, the most comprehensive M-model of the 

diazotroph A. vinelandii available to date. However, the A. vinelandii metabolic model 

from CarveMe (Machado et al., 2018) contains the closest number of reactions, 

metabolites and genes using the BiGG database information. 

 

Table 1 Comparison of the principal model properties (reactions, metabolites and genes) 
available for A. vinelandii.  

Model provenience Reactions Metabolites Genes Reference 

Present work 2469 2003 1278 Present work 

Model SEED 1570 1416 903 (Henry et al., 2010) 

CarveMe 2422 1978 1395 (Machado et al., 2018) 

García (Alginate and PHB 

production) 46 39 0 (García et al., 2018)  

Inomura (Nitrogen fixation) 33 17 0 (Inomura et al., 2018) 
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3.1.4 Biomass Objective Function 

The biomass objective function (BOF) contains the principal constituents and the 

abundance of each metabolite involved in biomass production. The proportion of each 

metabolite participating in the BOF composition is determined per gram of biomass. 

iDT1278 includes two biomass reactions: 1) An initial BOF was obtained from the first 

template (Escherichia coli K12 substr. MG1555, iML1515) based on their physiological 

similarity (Gram-negative bacteria); the stoichiometric coefficients of the amino acids 

present in the BOF were calculated based on the theoretical amino acid abundance in 

the genome, using 55% of the biomass composition from amino acids. 2) A second BOF 

was determined from the first reaction to predict the alginate production since A. 

vinelandii DJ produces alginate only under specific metabolic conditions (Noar et al., 

2015).  The second BOF contains the same constituents present in the first BOF plus 

periplasmic alginate in order to simulate the complete metabolism and alginate 

production of A. vinelandii.     

 

Fig. 2. Characteristics of iDT1278. A) Comparison among the template models 
(Escherichia coli str. K-12 substr. MG1655, Klebsiella pneumoniae subsp. Pneumoniae 
MGH 78578, Geobacter metallireducens GS-15, Clostridium ljungdahlii DSM 13528 and 
Methanosarcina barkeri str. Fusaro) and iDT1278 reactions. The six models share 208 
core metabolic reactions. A. vinelandii DJ model contains 112 unique reactions related 
to aromatic compounds metabolism, alginate and PHB production, etc.  B) Number of 
reactions in the template models and A. vinelandii DJ. C) Change in the number of 
reactions, metabolites and genes at the different stages of the reconstruction 
process/manual curation of A. vinelandii DJ. D) Reactions distribution through the 
subsystems in the genome-scale model; subsystems were grouped into 11 groups 
summarizing the complete metabolism of A. vinelandii DJ. Nitrogen fixation, PHB, and 
alginate production are highlighted in the condensed pathway diagrams. Alginate 
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accumulation occurs in the extracellular space meanwhile PHB storage happens in the 
cytoplasm compartment. Nitrogen fixation in A. vinelandii can be performed by different 
specialized nitrogenases.  

 

3.2 iDT1278 predicts accurately phenotypic experimental data 

3.2.1 Growth rates validation in carbon and nitrogen sources 

The model was validated under a wide range of different growth conditions (diazotrophic 

and non-diazotrophic growth), using high-throughput phenotypic data as well as literature 

information. Initially, iDT1278 was tested under six different experimental conditions, 

specifically, carbohydrates under diazotrophic and non-diazotrophic conditions (Table 2). 

The M-model predicted precisely the growth rates for all the carbon sources using 

ammonium or molecular nitrogen as nitrogen sources. For the carbon sources in non-

diazotrophic conditions (sucrose, mannitol and glucose), the predicted growth rates are 

consistent with experimental values obtained from the literature, resulting in an average 

accuracy close to 95%. For example, the predicted growth using mannitol (uptake rate of 

0.83 mmol/gDWh) as sole carbon source was 0.0472 h-1, agreeing with the experimental 

data (0.045±0.003 h-1). Average precision under nitrogen fixation conditions decreased 

significantly to 83%. Table 2 shows the comparison between experimental data from 

literature and predicted values for A. vinelandii DJ. Initial results showed higher model 

accuracy (12% more) when predicting growth rates using ammonium as nitrogen source 

compared to N2. Subsequently, flux balance analysis (FBA, Orth et al., 2010) was 

performed for a group of 38 carbon sources in diazotrophic and H2-consuming conditions 

(Wong and Maier, 1985). Statistical results show for the subset of 38 carbon sources 

(Fig. 3C) an accuracy of 95%, with 20 true positive predictions (100% positive predicted) 

and 16 true negative predicted results (89% negative predicted). Matthews correlation 

coefficient (MCC) was calculated under the conditions previously mentioned, obtaining a 

value of 0.67 (Fig. 3C). The false negative predictions obtained during the validation of 

aconitate and lactose are related to the absence of literature information about the 

enzymes which metabolize the carbon sources into familiar metabolites for the 

microorganism (e.g. the model lacks enzymes to convert lactose into glucose and 

fructose).  
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Table 2 Predicted and experimental growth rates reported for A. vinelandii DJ under 
different carbon and nitrogen sources.  

Carbon 

source 

Nitrogen 

source 

Experimental 

value (h-1) 

Predicted 

growth (h-1) 

Reference 

Glucose Ammonium 0.0505 0.0486 (Clementi, 1997) 

Mannitol Ammonium 0.045±0.003 0.0472 (Revin et al., 2018) 

Sucrose Ammonium 0.076±0.004 0.07 (Díaz-Barrera et al., 2016) 

Glucose Nitrogen 0.06±0.0002 0.09 (Wong, 1988) 

Fructose Nitrogen 0.048±0.002 0.0517 (Wong, 1988) 

Galactose Nitrogen 0.074±0.007 0.065 (Wong, 1988) 

 

 

Additional experimental validation was performed using Biolog plates for a set of carbon 

(PM1 and PM2) and nitrogen (PM3) sources to determine the growth rate values of A. 

vinelandii DJ. Out of 190 carbon sources from the Biolog plates, 123 compounds were 

identified in the model; the simulations were performed under two specific conditions: 

diazotrophic and non-diazotrophic simulation conditions. However, experimental results 

were obtained only under growth with ammonium as the unique nitrogen source. The 

same procedure used in PM1 and PM2 experiments was followed to estimate the growth 

rates with 75 different nitrogen sources. For this case, simulations were performed using 

pyruvate as the carbon source. Fig. 3 shows the complete analysis of the experimental 

and predicted data for all carbon (Fig. 3A) and nitrogen sources (Fig. 3B); statistical 

parameters (accuracy, sensitivity, specificity, positive predicted, negative predicted and 

Matthews correlation coefficient) were calculated for non-diazotrophic conditions.  

Subsequently, the same experimental results from the Biolog plates were used to 

calculate the statistical parameters of the CarveMe model to establish a comparison 

between iDT1278 and the CarveMe metabolic model accuracy. Details of CarveMe 

predictions and statistical parameters using Biolog plates data are presented in Table S3. 

For carbon sources validation, an accuracy of 89% was achieved with 58 true positive 

predictions (95% positive predicted) and 50 true negative estimations (84% negative 

predicted). For this subset of compounds, accuracy decreased significantly in negative 

predictions (10 false negative estimations). These negative prediction disagreements 

involve carbohydrates and some amino acids as carbon sources. Some false negatives 

appear to be related to the lack of evidence about required transporters. Simulated 

growth rate values in ammonium assimilation conditions were significantly higher than in 

the nitrogen fixation conditions (>26%). Higher accuracy was observed in both positive 

and negative predictions in iDT1278 compared to CarveMe simulations (global accuracy 

of 61%, 72% positive predicted and 54% negative predicted). These statistical results 

support the clear differences between the quality predictions of iDT1278 and other 

metabolic models available for A. vinelandii. Significant changes in the growth rate values 
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were not observed when using amino acids as carbon sources since these organic 

molecules contain nitrogen, which provides an indirect supply of this element to the 

microbe. For the nitrogen source validation, an overall accuracy of 91% was 

accomplished, nonetheless, the number of non-growing conditions increased 

considerably in comparison with the carbon condition experiments (almost 91% of 

nitrogen experiments resulted in no growth), indicating a reduced capability to grow in a 

wide range of nitrogen sources.  

 

 

Fig. 3. Model validation using high-throughput phenotypic data for different carbon and 
nitrogen sources. A) Predicted growth values of A. vinelandii DJ in nitrogen fixation (N2 + 
Carbon source) or ammonium assimilation (NH4 + Carbon source) conditions using 121 
carbon sources (PM1 and PM2 from Biolog Plates). However, only 71 carbon sources 
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are shown in Fig. 3. B) Estimated growth for 75 nitrogen sources, nevertheless just 12 
nitrogen compounds are presented in the graph (PM3 from Biolog Plates). Pyruvate was 
used to constrain the model as the unique carbon source during the nitrogen validation.  
C) statistical parameters and Matthews correlation coefficient of the predictions for the 
carbon (first column) and nitrogen sources (second column) using the Biolog Plates 
information; true positive (TP), true negative (TN), false positive (FP) and false negative 
(FN). Statistical analysis of the estimations for 38 carbon sources under nitrogen fixation 
and H2 consumption conditions (third column). The data used during the simulations were 
obtained from Wong and Maier, 1985. 

 

3.2.3 Carbon and nitrogen partitioning analysis 

 

The average metabolic fluxes of carbon and nitrogen elements were determined for all 

carbon sources with growth rate values greater than 0.001 from Biolog plates data (61 

total). The complete dataset with the experimental data is summarized in Table S2. The 

metabolic fluxes for both elements were grouped in 43 specific subsystems to identify the 

activity of the main pathways for all the experimental conditions.  The highest average 

carbon fluxes (see Methods) were obtained from energy metabolism (82 mmol/gDWh), 

oxidative phosphorylation (67.5 mmol/gDWh), biomass and maintenance functions (36 

mmol/gDWh), and TCA cycle (25 mmol/gDWh) for both nitrogen (N2 and NH4) conditions 

(disregarding transport fluxes). Similar tendencies were observed for the internal nitrogen 

flux distributions across the subsystems for diazotrophic and non-diazotrophic growth. 

However, the average flux distributions of carbon and nitrogen decline under diazotrophic 

conditions. Regarding global metabolic fluxes, the global carbon flux drops 4.9% and the 

nitrogen global flux value decreases 5.5%. The pathways with higher variation between 

carbon and nitrogen fluxes in diazotrophic and non-diazotrophic conditions were 

riboflavin metabolism (45%), glycine, serine and threonine metabolism (22%), alanine, 

aspartate and glutamate metabolism (26%), and nucleotide synthesis (10%). These 

subsystems are well-known for containing metabolites with high nitrogen content. The 

declinein the carbon and nitrogen global flux values of these pathways can be related to 

the low available nitrogen under diazotroph conditions due to the high energy cost of 

nitrogen fixation. 

The grouped average fluxes of carbon and nitrogen elements per subsystem calculated 

for diazotrophic and non-diazotrophic conditions were compared through a linear 

correlation analysis to determine how the subsystem flux values behave under both 

nitrogen (N2 and NH4) conditions. Fig. 4 presents the linear correlations values between 

diazotrophic and non-diazotrophic conditions of the active subsystems. For carbon and 

nitrogen partitioning analysis, the highest correlation coefficients (Pearson correlation 

>0.95, p-value <1x10-30) were observed in all the amino acids pathways, biomass and 

maintenance functions, energy metabolism, carbohydrate metabolism, and some 

subsystems related to lipid metabolism (lipopolysaccharide biosynthesis and 
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glycerophospholipid metabolism), demonstrating similar metabolic flux distributions 

through these specific subsystems when comparing diazotrophic and non-diazotrophic 

conditions. However, weak correlation values were obtained in riboflavin metabolism 

(r=0.66), oxidative phosphorylation (r=0.32 in carbon fluxes and r=0.37 in nitrogen 

distributions) and transport to the inner membrane (r=0.12 and r=0.31, respectively), 

showing an average flux distribution decrease of 45% for these specific subsystems when 

comparing carbon and nitrogen activity in diazotrophic against non-diazotrophic 

conditions. Additionally, strong correlation values were observed in specific subsystem 

clusters for both nitrogen conditions.   
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Fig. 4. Carbon and nitrogen partitioning distribution from Biolog plates experimental data. 
A) Average carbon flux correlation coefficients through all subsystems in diazotrophic 
and non-diazotrophic conditions; B) average nitrogen flux correlation coefficients through 
all subsystems in diazotrophic and non-diazotrophic conditions.  
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3.3 Alginate and PHB production estimated through in-silico experiments  

 

A. vinelandii DJ contains specific mechanisms to produce and secrete alginate into the 

extracellular space. In iDT1278 we manually curated six specific reactions related to 

alginate biosynthesis including 16 different genes. One of the most important reactions 

involved in this pathway is the alginate epimerase (EC 5.1.3.37), which encompass a 

complex protein system to synthetize the alginate polymer (Pacheco-Leyva et al., 2016).  

We evaluated the model accuracy to growth and alginate production using four carbon 

sources under diazotrophic and non-diazotrophic conditions. Experimental data retrieved 

from the literature (Revin et al., 2018) was only available for growth with ammonium. 

Simulations were confirmed to accurately predict (true positive predictions) alginate 

production rates with three carbon sources (glucose, mannitol, and sucrose). For 

example, the predicted growth using glucose (uptake rate of 0.33 mmol/gDWh) as the 

sole carbon source was 0.1478 h-1 and an alginate production rate of 0.25 mmol/gDWh, 

agreeing with the experimental data (growth rate of 0.152±0.012 h-1 and alginate 

production rate of 0.265±0.018 mmol/gDWh). Lactose was the only compound with a 

mismatch between reported values and in-silico outputs (false negative). The 

disagreement appears to be associated to the lack of information in the literature and 

bioinformatic databases about the essential enzymes in the metabolism of this 

disaccharide in A. vinelandii DJ.  

We compared the growth rates determined under diazotrophic and non-diazotrophic 

conditions for alginate production. The simulation analysis showed a significant increase 

in the growth rates (close to 28%) when the A. vinelandii consumes ammonium as a 

nitrogen source instead of molecular nitrogen. Additionally, a second comparison of 

alginate production rates between ammonium and molecular nitrogen exhibited the same 

increasing tendency when ammonium is used as a unique nitrogen source instead of 

molecular nitrogen (around 27%).  

While alginate is transported to the extracellular space, PHB is intracellularly stored 

(Yoneyama et al., 2015; Zúñiga et al., 2011). To simulate PHB accumulation in A. 

vinelandii we incorporated a sink reaction to the model iDT1278. Simulated flux 

distributions about PHB production were validated using fluxomic data retrieved from Wu 

et al. (2019). The metabolic fluxes of the reactions involved in the PHB synthesis and 

related pathways (glycolysis, pentose phosphate pathway, the Entner-Deundoroff 

pathway, and the TCA cycle) were calculated through FBA for diazotrophic and non-

diazotrophic conditions. The simulation results were compared with the experimental 

measured fluxes (Wu et al., 2019) and the percent error was estimated by reaction (Fig. 

5). A general agreement in the reaction fluxes was observed under both nitrogen (N2 and 

NH4) conditions. A total of 16 out of 19 reaction flux estimations presented a global 

accuracy above 90% for diazotrophic and non-diazotrophic conditions. Disagreements 

were detected in three specific reactions: the transketolase (TKT2), aconitase 
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(ACONTa/ACONTb) and isocitrate dehydrogenase (ICDHyr) in which the percent errors 

were above 20%. According to the predicted and experimental results, a higher PHB 

production is obtained under non-diazotroph conditions due to higher energy cost for 

nitrogen fixation.  Additionally, most of the carbon coming from the glucose is metabolized 

through the Entner-Doudoroff (ED) pathway, generating less energy than glycolysis, but 

producing pyruvate (PHB precursor) in fewer steps.  The available pyruvate generated 

though the ED pathway is mostly used in the TCA cycle and the PHB synthesis (Castillo 

et al., 2013; Wu et al., 2019), allowing the growth of the microorganism and the production 

of this biopolymer.  

 

 

Fig. 5. Metabolic flux map distribution of A. vinelandii under diazotrophic and non-
diazotrophic conditions. The map displays major metabolic pathways involved in the PHB 
production. Values of metabolic flux are normalized to a glucose uptake rate of 100. 
Predicted metabolic fluxes were compared against fluxomic data determined by Wu et al. 
in 2019.  The reactions were labeled according to their percent error (green, blue and 
red) and nitrogen source (green and yellow). Abbreviations: G6P, glucose-6-phosphate; 
F6P, fructose-6-phosphate; FDP, fructose-1,6-bisphosphate; G3P, 3-phosphoglycerate; 
DHAP, dihydroxyacetone phosphate; 13DPG, 3-phosphoglyceroil phosphate; 2PG, 2-
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phosphoglycerate; PEP, phosphoenolpyruvate; PYR, pyruvate; Cit, citrate; Acon, 
aconitate; iCit, isocitrate;  AKG, a-ketoglutarate; sucCoA, succinyl coenzyme A; Suc, 
succinate; Fum, fumarate; Mal, malate; OAA, oxaloacetate; GLX, glyoxylate; PHB, 
polyhydroxybutyrate; 6PGL, 6-phospho-glucono-1,5-lactone; 6PGC,  6-phospho-
gluconate; 2DDG6P, 2-Dehydro-3-deoxygluconate 6-phosphate; Ru5P, ribulose-5-
phosphate; R5P, ribose-5-phosphate; S7P, sedoheptulose-7-phosphate; X5P, xylulose-
5-phosphate; E4P, erythrose-4-phosphate. 

 

4 Discussion 

 

4.1 Model Reconstruction 

 

Here we have created the first comprehensive genome-scale metabolic model for A. 

vinelandii DJ (iDT1278) that focuses on nitrogen assimilation, nitrogen fixation, as well 

as on alginate and PHB production. The model consists of 1278 genes involved in 2469 

reactions. Compared to the first microorganism template used in the present work 

(Escherichia coli str. K-12 substr. MG1655, iML1515), the percentage of metabolic genes 

per genome decreases from 31% (iML1515) to 26% (iDT1278). However, a higher 

percentage of metabolic genes (from 26% of A. vinelandii to 12% of the average genes 

in the photosynthetic models) was observed when iDT1278 was compared to three 

photosynthetic organisms in the BiGG database : C. vulgaris UTEX 395, iCZ843 (Zuñiga 

et al., 2016), Synechocystis sp. PCC 6803, iJN678 (Nogales et al., 2012) and C. 

reinhardtii, iCR1080 (Chang et al., 2011). The M-model is accurate to 89% for all the 

carbon sources and 91% for nitrogen sources. The model was validated using a wide 

variety of carbon (159 compounds) and nitrogen (75 metabolites) sources. iDT1278 

shown a significant higher accuracy (27% upper) in the predictions compared to the 

CarveMe model simulations. Additionally, iDT1278 predicted accurately the growth ratio 

and production values of alginate and PHB production under diazotrophic and non-

diazotrophic conditions. To our knowledge, this is the first M-model at genome-scale 

capable to simulate several carbon and nitrogen conditions (close to 250 conditions) with 

a high precision even when comparing internal metabolic fluxes.  

4.2 Model Validation 

4.2.1 Nitrogen Fixation 

iDT1278 accurately predicts the growth of A. vinelandii using different carbon sources 

under diazotrophic and non-diazotrophic conditions. The model contains all required 

reactions and constraints to successfully simulate the BOF representing the growth of the 

organism. Model predictions have been confirmed by experimental validation using 

Biolog plates (PM1, PM2 and PM3). With this information we elucidated the preferred 
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mechanism used by the A. vinelandii DJ to fix nitrogen while growing with different carbon 

sources. The N2 uptake depends on the ammonium concentration and metal cofactor 

concentrations required for the nitrogenases (García et al., 2018; Inomura et al., 2018). 

In our model, a difference in growth rate can be observed under diazotrophic and non-

diazotrophic conditions. The growth rate under different carbon sources is higher during 

NH4 assimilation than during N2 fixation. However, the growth rates are quite similar for 

growth with amino acids under diazotrophic and non-diazotrophic conditions. This can be 

explained by the fact that amino acids release ammonium when metabolized which then 

becomes readily available to the organism. N2 fixation on the other hand is an ATP-

dependent process and the organism must employ more energy to convert the N2 into 

ammonium. 

Growth rate values decrease considerably when A. vinelandii DJ grows diazotrophically 

but nitrogen and carbon flux distributions per subsystem (e.g. amino acid, lipid, and 

carbohydrate metabolism) behave very similar in both nitrogen conditions. These flux 

distribution correlations suggest that the major discrepancies in the metabolism of A. 

vinelandii fixing nitrogen are related to the cofactor and vitamin pathways (riboflavin 

metabolism) and oxidative phosphorylation (energy generation). According to the model 

predictions (iDT1278), the vitamin, cofactor and oxidative phosphorylation pathways in 

A. vinelandii are involved in the generation of the precursors for the BOF; when 

ammonium is used as a nitrogen source, the carbon and nitrogen fluxes in these 

pathways are significantly higher (30%) than the fluxes estimated using molecular 

nitrogen as nitrogen source. 

4.4.3 Alginate production 

Alginate represents an important exopolysaccharide for A. vinelandii and is synthetized 

to reduce oxygen availability and thus increase nitrogenase activity for enhanced nitrogen 

fixation (Galindo et al., 2007; Nosrati et al., 2012). Additionally, this polymer has industrial 

relevance to multiple fields such as in pharmaceutical (Azevedo et al., 2014), 

biotechnological (Tomida et al., 2010), and food industry applications (Kuda et al., 1998). 

Therefore, elucidating the mechanism of alginate production could potentially provide 

insights for increasing production of this valuable biopolymer. iDT1278 accurately 

predicts three out of four carbon sources capable of producing alginate and the 

accompanying nitrogen sources to maximize biosynthesis of this polymer. The model 

also successfully predicts the decline in the growth and alginate production when 

molecular nitrogen is used as a nitrogen source. Alginate metabolism has been studied 

using genetic and regulation approaches to explain the synthesis of this valuable 

biopolymer, since most of  the genes involved in this metabolic pathway are regulated by 

the presence of oxygen (Ertesvåg et al., 1995; Lloret et al., 1996; Núñez et al., 2000). In 

the present work we show that alginate production can also be explained based 

exclusively on metabolic requirements using mathematical and metabolic 

representations. 

4.2.3 PHB production 



 

35 
 

PHB, like alginate, is synthesized by A. vinelandii to reduce oxygen availability and 

promote nitrogen fixation. iDT1278 contains all the genes and specific reactions involved 

in the production of PHB. The polymer is a high value product used in the production of 

biodegradable plastics and other environmental friendly polymers (Galindo et al., 2007).  

iDT1278 accurately predicts most of the metabolic flux values in the reactions (85% of 

the reactions) involved in PHB synthesis and pathways related to the generation of PHB 

precursors and energy metabolism (glycolysis, pentose phosphate pathway, the Entner-

Doudoroff pathway, and the TCA cycle) for diazotrophic and non-diazotrophic conditions. 

The model is capable of accurately simulating all the variations presented in the flux 

distribution values for every reaction involved in the PHB synthesis under different 

conditions (ammonium or molecular nitrogen as unique nitrogen sources) using only 

metabolic data (stoichiometry and biochemistry data).  

As with alginate production, PHB metabolism in A. vinelandii has been well studied using 

exclusively genetic and regulation perspectives since PHB accumulation mainly occurs 

during oxygen limitations (Castillo et al., 2013; Vijayendra et al., 2007); however, PHB 

metabolic distribution and biosynthesis can also be described using metabolic data 

according to the predictions performed by iDT1278. Our model could as a result be 

deployed to potentially optimize PHB production in A. vinelandii.  

 

4.3 Network properties 

Most of the False Negative (6) and False Positive (6) predictions from the model related 

to carbohydrates and amino acids substrates could not be confirmed to belong to a 

pathway or to an enzyme that converts these carbon sources to internal metabolites 

present in the model either from literature information or available genomic and 

metabolomic databases. Moreover, when using amino acids as growth substrates, the 

model predicts very similar growth rate values for diazotrophic and non-diazotrophic 

conditions since some amino acids can release ammonium further supporting growth. 

These discrepancies between experimental evidence and model predictions could be 

related to the limited information available concerning specific metabolic mechanisms for 

metabolizing carbon sources as carbohydrates, lipids and amino acids in A. vinelandii or 

processes related to genetic, transcriptional and regulation. Indeed, while nitrogen 

metabolism is tightly regulated in A. vinelandii (Hamilton et al., 2011; Toukdarian and 

Kennedy, 1986), transcriptional and translational regulation is not currently part of this M-

model but could in part be recapitulated by including all macromolecular synthesis as part 

of a subsequent ME-models (Lerman et al., 2012; Liu et al., 2019, 2014; O’Brien et al., 

2013). Furthermore, nitrogenase activity and activity of other nitrogen-associated 

pathways are also regulated at the enzyme level (Pacheco-Leyva et al., 2016), potentially 

also contributing further to the lack of agreement between model predictions and 

experimental data. 

 



 

36 
 

4.4 Future Aspects 

Insight into the metabolic processes using the genome-scale model iDT1278 could 

benefit low-cost media optimization for A. vinelandii and to further improve production 

processes as PHB, alginate and other biopolymers with high industrial value. Although 

this environmentally important model organism has been isolated and studied for more 

than 100 years, its physiology and some metabolic pathways have yet to be fully 

understood. We believe the current model provides a valuable step along the path 

towards better characterization of this important microbe. Unraveling this knowledge for 

A. vinelandii could improve its use in industrial applications (Noar and Bruno-Bárcena, 

2018), and the systems biology approaches presented here may provide a tool to help in 

achieving that goal. 
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Candidatus Liberibacter asiaticus (CLas) has been associated with Huanglongbing, a 

lethal vector-borne disease affecting citrus crops worldwide. While comparative 

genomics has provided preliminary insights into the metabolic capabilities of this 

uncultured microorganism, a comprehensive functional characterization is currently 

lacking. Here we reconstructed and manually curated genome-scale metabolic models 

for the six CLas strains A4, FL17, gxpsy, Ishi1, psy62, and YCPsy, in addition to a model 

of the closest related culturable microorganism, L. crescens BT-1. Predictions about 

nutrient requirements and changes in growth phenotypes of CLas were confirmed using 

in vitro hairy root-based assays, while the L. crescens BT-1 model was validated using 

cultivation assays. Host-dependent metabolic phenotypes were revealed using 

expression data obtained from CLas-infected citrus trees and from the CLas-harboring 

psyllid Diaphorina citri Kuwayama. These results identified conserved and unique 

metabolic traits as well as strain-specific interactions between CLas and its hosts, laying 

the foundation for the development of model-driven Huanglongbing management 

strategies.  
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Candidatus Liberibacter asiaticus (CLas) has been associated with Huanglongbing 

(HLB), or citrus greening, a devastating vector-borne disease causing millions of dollars 

of agricultural damages every year1. CLas species infect the phloem of some plants in 

the family Rutaceae (e.g. citrus, Murraya paniculata) and Solanaceae (e.g. potato)2. HLB 

causes poor vegetative growth, fruit drop, diminished fruit quality, and tree decline3–7.   

CLas infections have been documented across most citrus-producing areas in Asia, the 

Americas and Africa5,8, and are projected to spread further9,10. CLas is naturally spread 

in citrus through a psyllid host, Diaphorina citri Kuwayama10. The basic HLB management 

scheme is based on the use of HLB-free nursery stock, inoculum reduction by removal 

of HLB-affected trees and insecticide treatments for control of psyllid populations11. In 

addition, various combinations of citrus rootstocks and interstocks11, cocktails of 

antibiotics12 and small molecule bacterial inhibitors13, or brassinosteroids14, as well as 

thermotherapy and nanoemulsion technology15 have been deployed. However, none of 

these options has been proven to be very successful, economically viable, or 

environmentally sustainable, making HLB a major threat to the citrus industry worldwide.   

Mathematical models have been critical in developing treatment options for infectious 

diseases16,17. These models could provide useful information for best practices to treat or 

prevent HLB. However, few detailed models of HLB currently exist18. To identify novel 

alternatives for combatting HLB, detailed knowledge about the metabolic dependencies 

and capabilities of the pathogen (CLas) is required. While CLas was identified as the 

likely infectious agent responsible for HLB in 1994 using molecular methods19, CLas has 

never been consistently cultivated axenically in vitro, limiting our ability to functionally 

characterize this pathogen. On the other hand, Liberibacter crescens, the closest 

culturable relative to CLas, was isolated and cultured in vitro from the phloem sap of 

defoliating mountain papaya in Puerto Rico20,21. Advances in metagenomic sequencing 

have enabled the assembly of genomes from several CLas strains obtained from HLB-

infected citrus22. Genome sequences are the primary input used to reconstruct genome-

scale metabolic models. These models have been successfully validated as a systems 

biology framework and deployed for a variety of uses. For example, models have been 

utilized for elucidating fundamental metabolic processes23–25, optimizing culture media 

and growth conditions26,27, and have been essential for metabolic engineering efforts28. 

These metabolic models are genome-scale knowledge databases, which contain 

manually curated annotation related to gene-protein-reaction associations for all possible 

metabolic reactions inside a cell. Reconstructed models have been used to understand 

and channel the metabolism of different pathogenic and non-pathogenic 

microorganisms17,29 as well as to contextualize metabolic states based on omics data24. 

Here we reconstructed genome-scale models for seven Liberibacter strains and 

evaluated their physiology and metabolic response. Furthermore, we used in vivo 

expression data to determine strain-specific interactions of CLas while hosted by the 

psyllid Diaphorina citri Kuwayama or Citrus spp.    
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Results  

Genome characteristics and model properties 

Metabolic models were reconstructed based on complete genomes of the CLas strains 

gxpsy, Ishi-1, psy62, and almost complete genomes obtained by shotgun sequencing of 

strains A4, FL17, and YCPsy. Strains A4, FL17, Ishi-1, psy62, and YCPsy were obtained 

from citrus, while sequences for gxpsy were obtained from the psyllid. Additionally, we 

reconstructed a comparative metabolic model using the complete genome sequence of 

the microorganism L. crescens BT-1 (BT-1), the closest culturable microorganism to 

CLas (Supplementary Fig. 1a). All genome sequences were obtained from the PATRIC 

database30. In total, seven genome-scale metabolic models were reconstructed and the 

genomic and metabolic content of each strain was compared. Fig. 1 details the main 

characteristics of the genomes and resulting models. The average number of annotated 

proteins was 1,185 across all CLas genomes and 1,422 for BT-1. We calculated the 

percent protein sequence identity among the seven Liberibacter strains. The CLas 

genomes had around 75% identity to L. crescens BT-1 (Fig. 1a) and over 98% identity to 

each other (Fig. 1b).   
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Fig. 1| Properties of genomes and constraint-based metabolic models. a, 
Percentage of protein sequence identity estimated using whole genome sequences of 
Candidatus Liberibacter asiaticus (CLas) strains and L. crescens BT-1. The identity 
between each CLas strain and BT-1 varied from 60-70%. b, Protein homology identity 
among CLas strains, which were over 99% identical. c, Example of pathway 
completeness and gap filling for the TCA cycle and methionine metabolism in the CLas 
models. Circles represent metabolites, green represents gap filled reactions, and brown 
represents gene associated reactions. d, Reactions involved in central metabolism 
including glycolysis/gluconeogenesis, the pentose phosphate pathway, and TCA cycle 
were categorized as pan reactions (highlighted in blue). The accessory reactions that 
include modeling reactions and other additional metabolic pathways (e.g. amino acid, 
carbohydrate, and lipid metabolism) are shown in red. Unique reactions in each model 
are shown in orange.  

  

A comprehensive organization of all available data and information on Liberibacter strains 

is crucial for overcoming the devastating impact of HLB. To this end, we created 

metabolic models that are also referred to as computational knowledge-databases, which 

compile manually curated annotations for each CLas strain and L. crescens BT-1. After 

extensive curation of all models, a total of 1,751 protein sequences (417 unique), 

previously annotated as hypothetical, were associated with a metabolic reaction or 
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transport reaction in these models. A list of these reactions and their gene-protein-

reaction associations is provided in Supplementary Table 1. Manual curation was 

followed by gap filling (Fig. 1c) and conversion of the reconstructions into mathematical 

models using the COBRA Toolbox31. The final model properties are shown in Table 1. 

The number of metabolites and reactions shared by all CLas models, defined as 

“Pancapabilities”, were 445 and 605, respectively (Fig. 1d). Supplementary Fig. 2 shows 

a comparison of metabolites and reactions across the reconstructed models. The 

metabolic model of L. crescens BT-1 contained ~15% more metabolic reactions and 

metabolites than the CLas strains, hinting at a broader metabolic capability of L. 

crescens. Around 30% of reactions present only in BT-1 were associated with amino acid 

metabolism (e.g. methionine, lysine, glycine, serine and threonine metabolism). Another 

~30% of those reactions were associated with the cell envelope (e.g. transporters and 

fatty acids). The rest of the reactions were divided among carbohydrate, glycan, and 

nucleotide metabolism (see Supplementary Table 2). We found that auxotrophies are 

CLas strain-specific, especially auxotrophies for L-proline, L-serine, and Larginine 

(Supplementary Fig. 2). All models predicted auxotrophies for vitamins (e.g. riboflavin, 

biotin, thiamin, choline) and steroids (e.g. pantothenate, taurine, L-carnitine, quinate) 

(Supplementary Fig. 2).   

Validation of the Liberibacter crescens BT-1 model and analysis of Candidatus 

Liberibacter asiaticus models. Cruz-Munoz et al.32 recently reported citrate as the 

preferred carbon and energy source for L. crescens BT-1. The authors reported the 

growth of L. crescens BT-1 on the complex media BM-7 by measuring optical density. 

They also tested various media compositions (M13, M14, and M15), and developed an 

optimized defined medium (M15, containing citrate) which improved the growth rate32. 

Using OD measurements, we determined the growth rates of L. crescens BT-1 while 

growing in BM-7, reaching a growth rate of 0.011±0.007 1/h, which results in a 63 h 

generation time. Defined media compositions, such as M13, M14, and M15 can also 

support growth of this strain, resulting in growth rates of 0.009±0.0006 1/h, 

0.0081±0.0004 1/h, and 0.012±0.003 1/h respectively.   

These growth rate phenotypes observed experimentally were reproduced in silico by the 

BT-1 model, obtaining growth rate predictions of 0.011, 0.009, 0.011, and 0.015 1/h for 

the culture media BG-7, M13, M14, and M15, respectively. Complete data is shown in 

Supplementary Table 3. Growth rate predictions using M15 media with varying citrate 

concentrations are shown in Fig. 2a and corroborate experimental results32. To determine 

the impact of amino acids and intermediaries of the TCA cycle on growth rate, we 

interrogated the model for metabolites most affecting the growth rate of L. crescens. We 

found that citrate, aspartate, and serine have an interwoven growth effect. Simulations 

performed while varying serine, aspartate, and citrate uptake rates are shown in Fig. 2b, 

highlighting a proportional increase among predicted growth rates and constrained 

uptake rates. Predicted trends were confirmed experimentally for citrate and serine 

individually and in combination (Fig. 2c), however increased aspartate additions reduced 

the growth of BT-1 experimentally.  
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CLas models were evaluated using different culture media compositions to unravel the 

most important metabolites contributing to CLas growth. The culture media compositions 

tested for L. crescens BT-1 were used as constraints to simulate CLas growth as shown 

in Supplementary Table 3. Simulations using single carbon sources (uptake rate of 15 

mmol/gDWh) demonstrated that none of the CLas strains were able to grow, suggesting 

that co-metabolism with the host could play an important role for these bacteria. Modeling 

results showed that arginine, glucose, glutamate, glutamine, proline, ornithine, citrate, 

and alpha-ketoglutarate could each support the growth of L. crescens BT-1 individually. 

However, we found that CLas strains were highly dependent on co-metabolism to 

stimulate growth, necessitating the combination of two or more carbon sources at the 

same time (e.g. glucose and glycine, or aspartate, or serine, or succinate). The growth 

rate improvement due to the addition of single metabolites in the culture media containing 

glucose was evaluated for each metabolite (Supplementary Table 3). Co-metabolism 

simulations were performed by assessing the growth rate predictions while varying the 

uptake rates of serine, aspartate, and citrate in a continuous gradient from 0 to 45 

mmol/gDW/h. Experimental results suggest that citrate is the main driver of L. crescens 

growth, followed by serine and aspartate (Fig. 2c).  
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164

    

Fig. 2| Validation of the metabolic model of Liberibacter crescens BT-1. a, Simulated 
growth rate results using the culture medium M15 while varying the citrate concentration 
(blue circles). Squares with error bars represent the growth rate calculated using OD 
measurements. Citrate constraints used for simulation as well as experimental and 
predicted growth rates are given in Supplementary Table 3. b, Relative growth rate 
predictions across varying citrate, serine, and aspartate uptake rates. Growth rate in M15 
was used as control c, Experimentally determined growth phenotypes. Box plots show L. 
crescens BT-1 growth under 14 treatments using several concentrations of citrate, serine, 
and aspartate and their interaction. Experiments were carried out using three 
independent replicates. Growth rates were calculated using 25 consecutive time points 
(sampled every 12 hours) measured over the course of 12 days. The culture medium 
M15 and the base media (without nutrients) were used as controls. d, Comparison among 
predicted and experimental growth rates of BT-1 while using the culture media M14 
(Supplementary Table 3) in combination with glucose, fructose, fumarate, malate, 
maleate, maltose, oxoglutarate, and succinate as additional carbon sources. Predicted 
and observed growth phenotypes were correlated up to 71% (Pearson correlation, p-
value<0.0041, n=3). A theoretical R2=1 is also shown in the figure for comparison 
purposes.  
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The role of each metabolite in the metabolic model was evaluated across all models 

(Supplementary Fig. 3). We found that all CLas strains have similar simulated growth 

rates across all media compositions (i.e. BM-7, M13, M14, and M15). However, when the 

effect of each metabolite was analyzed independently, we found that media composition 

affected CLas growth rates differentially (Supplementary Fig. 3), suggesting strain-

specific phenotypes. Also, the growth rates predicted for L. crescens BT-1 differed from 

those predicted for the six CLas strains (Supplementary Fig. 3).   

  

The average metabolite connectivity was evaluated in the seven metabolic models. This 

connectivity network highlighted distinct differences among the models for the six CLas 

strains (Fig. 3a). For example, proline was connected (based on bubble size) to six 

reactions in the gxspy model, but to only five reactions in the other CLas models, while 

the opposite was observed for methionine and malate (Supplementary Table 4). The 

connectivity network enabled us to estimate the contribution of each metabolite to growth 

rate, and thereby calculate the essentiality fraction (relative change to growth rate). Fig. 

3a summarizes modeling predictions of the individual carbon sources for the metabolic 

models in different culture media compositions, highlighting the differences in predicted 

growth rate by the presence of specific metabolites (shaded areas in Fig. 3a). Highly 

connected metabolites, such as glutamine, glutamate, serine, and alpha-ketoglutarate, 

had high essentiality fractions, around 0.5-0.7 in both the CLas and L. crescens BT-1 

models. However, the only metabolite with the same essentiality fraction as glucose was 

glycine for L. crescens BT-1. The essentiality fraction of metabolites, such as succinate, 

fumarate, citrate, urea, tryptophan, arginine, and riboflavin, were dramatically lower for 

L. crescens compared to the CLas strains. The metabolites predicted to increase growth 

rate for each of the four media compositions are shown in a Venn diagram (Fig. 3b). 

Glucose and nine amino acids improved the simulated CLas growth rates in all culture 

media, whereas alphaketoglutarate (akg) and urea were predicted to improve growth rate 

only for the BM-7 media. Overall, modeling predictions showed that serine, malate, 

fumarate, and aspartate will improve the growth rate of CLas strains in culture medium 

M13, M14, and, M15. On the other hand, predicted metabolites limiting the growth rate 

are nicotinate, pantothenate, riboflavin, and aminobenzoate when BM-7 culture media 

was used.  

  

While these results hint at specific metabolites that could improve CLas growth rates, 

they also suggest that phenotypic outcomes depend on the media composition to which 

each metabolic model is being subjected. The heatmap in Fig. 3c shows the predicted 

number of metabolites produced when biomass production is optimized. For 

microorganisms such as CLas gxpsy and Ishi-1 the media composition can strongly affect 

the ability of a strain to synthesize metabolites, varying from 60 to over 220 metabolites. 

The M15 media composition resulted in maximal metabolite production for every model, 

except for CLas gxpsy. The culture medium BM-7 resulted in a similar number of 
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produced metabolites for all seven models. We also evaluated the growth phenotype 

under eight different carbon sources assayed experimentally, predicting accurately the 

growth rate for oxoglutarate, glucose, and malate and an overall growth increase for 

fructose, fumarate, malate, maltose, and succinate (Fig 2d). The BT-1 model could 

explain up to 71% (Pearson correlation, p-value<0.0041) of the changes in the observed 

growth rate for the different carbon sources32.  

To test this experimentally with CLas, a cocktail of predicted metabolites was added to in 

vitro citrus hairy root cultures infected with CLas. Culture media B5, which is used to 

propagate the hairy root cultures, was supplemented with three concentrations (0.1, 1, 

and 5 mM) of an amino acid cocktail containing glycine, serine, proline, aspartate, 

glutamine, and glutamate. Measurements of CLas in the hairy root cultures obtained over 

the course of seven days showed that the treatment of 1 mM significantly improved CLas 

growth rate compared to 0.1 and 5 mM treatments as well as controls  (F=5.99, Prob>F 

0.01, df=14) (Fig. 3d).  
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Fig. 3| Model evaluation by culture media. a, Metabolic connectivity and essentiality. 
The essentiality fraction  

(change in growth rate) was determined by identifying the percentage of reactions in 
which each metabolite in the culture media participates. Metabolite essentiality in 
Candidatus Liberibacter asiaticus strains and Liberibacter crescens BT-1 are shown by 
bubble location and bubble color (non-essential in dark blue to essential in yellow), 
respectively. Bubble size indicates connectivity. Shaded surfaces represent the 
metabolite contribution to the growth rate by culture media. b, Metabolites predicted to 
improve CLas growth rates are compared across media compositions in the Venn 
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diagram. c, Biosynthetic capacity under maximal Liberibacter biomass growth rate by 
culture media. The color scale represents the number of metabolites predicted to be 
synthesized. d, In vitro measurements of CLas growth rates over time in hairy root-
assays. Panels show CLas titers for day 3, 5, and 7.  

 
Experimental measurements were normalized to one for day 0. Each panel shows the 

one-way ANOVA for the five assayed treatments (B5, culture medium suitable for the 

hairy root system; B5+0.1 mM AA, the hairy root system using B5 medium in addition 

with 0.1 mM of a cocktail of glycine, serine, proline, aspartate, glutamate, and glutamine; 

subsequently the amino acid cocktail was added in concentrations 1 mM and 5 mM for 

the treatments, B5+1 mM AA; B5 and B5+5 mM AA; the treatment B5+Oxytet contained 

500 mg/L of the antibiotic oxytetracycline). Measurements were obtained using at least 

four and maximum five replicates of independent samples, each sample was measured 

four times (0, 3, 5, and 7 days). The ANOVA function tests the hypothesis that the 

samples (4-5 total) are drawn from populations with the same mean against the 

alternative hypothesis that the population means are not all the same. Standard ANOVA 

stats are given in each panel. Boxplots marked with * are significantly different from the 

red boxplot(s) of the same panel.  

Host-dependent constraints reveal activation of Candidatus Liberibacter asiaticus 

pathways associated with pathogenic phenotypes. After validating the L. crescens 

BT-1 genome-scale metabolic model, we evaluated the response of CLas models using 

host-specific RNAsequencing data. Expression data was collected from phloem-enriched 

samples (referred to as phloem in the rest of the paper) from three Citrus cultivars 

(Valencia orange, Washington navel orange, and Tango mandarin) and from the 

alimentary canals of Diaphorina citri (psyllid). Using RNA-sequencing reads we 

generated strain-specific counts that were used to constrain boundaries of reactions in 

each model. Supplementary Table 5 shows statistics about data preprocessing of RNA-

seq data such as number of raw reads and total counts generated after trimming reads 

aligned to the citrus or psyllid genomes. Supplementary Fig. 4 and 5 show the expression 

profiles for all CLas strains and the differentially expressed genes using a cut off of 

pvalue<0.05 (t-test).  As expected, gene expression fold change between phloem and 

psyllid samples was normally distributed across genes. The maximum fold change 

observed was 28. Fig. 4a shows the distribution of the flux ratio used to constrain the 

CLas models from each host, as well as the fold change between samples from the two 

hosts obtained from RNA-sequencing data. Data from the individual phloem and psyllid 

samples were combined into two separate datasets that were used to constrain the 

models, giving insight into specific metabolic traits operated by CLas under each host. 

Constrained models are provided in Dataset 1.   

  

Host-specific simulations performed using the CLas models (A4, FL17, gxpsy, Ishi-1, 

psy62, and YCPsy) resulted in a growth rate decrease of up to 68% and 74% for phloem 
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and psyllid, respectively, in comparison to media-constrained conditions in which the 

predicted and experimental growth rate was around 0.013±0.0009 1/h. Phloem-constraint 

flux distributions revealed increased amino acid metabolism, fatty acid metabolism, 

gluconeogenesis, nitrogen metabolism, one-carbon pool of folate, nicotinamide and 

nicotinate metabolism (Fig. 4b). Network evaluation showed that these pathways are 

interconnected by metabolites, such as formate, glycine, and 5,10-

methylenetetrahydrofolate, linking these subsystems with possible pathogenic traits.  

  

On the other hand, psyllid-constraint flux distributions revealed increased amino acid 

metabolism, cell envelope, glycolysis, pyruvate metabolism, and TCA cycle (Fig. 4b). The 

reactions associated with the cell envelope catalyze the synthesis of membrane lipids 

(enoyl reductase, EC 1.3.1.9) and oligosaccharides (DTDP-4-dehydrorhamnose 3,5-

epimerase, EC 5.1.3.13, DTDPglucose 4,6-dehydratase, EC 4.2.1.46, and Glucose-1-

phosphate thymidylyltransferase, EC 2.7.7.24). These oligosaccharide enzymes also 

participate in the metabolism of nucleotide sugars, streptomycin biosynthesis, and 

polyketide sugar biosynthesis. Polyketide biosynthesis is closely related to the additional 

availability of sugars and organic acids (e.g. pyruvate, succinate, malate), products of 

CLas metabolism.  Fig. 4c shows the predicted flux distributions when BT-1 and CLas 

models are differentially constrained (media and expression data of phloem or psyllid). 

The overall flux distributions across all constraints showed that subsystems including 

glycolysis, transporters, TCA cycle, pyruvate metabolism, and nitrogen metabolism were 

highly activated, opposite to riboflavin metabolism, steroid biosynthesis, and cysteine and 

methionine metabolism. Furthermore, the pentose phosphate pathway was predicted to 

be active only under host-constraints while glycine, serine, and threonine metabolism 

reduced in flux.  Broadly, CLas models constrained with phloem expression data 

clustered with models constrained with culture media M15 and CLas models constrained 

with psyllid expression data clustered with the flux distribution of BT-1 (Fig. 4c). These 

findings give insight into potential metabolic stages that facilitate CLas cultivation in vitro 

when obtained from the psyllid host.  
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Fig. 4| Model-driven analysis of Candidatus Liberibacter asiaticus (CLas) RNA-
sequencing data. a, The histogram shows the distribution of the average fold change of 
CLas expression for samples obtained from the psyllid alimentary canals and citrus 
phloem. In red the fold change between phloem and psyllid samples is shown using the 
entire RNA-sequencing dataset. Plotted in blue and green is the average ratio of 
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predicted flux distribution from the CLas model (A4, FL17, gxpsy, Ishi-1, psy62, and 
YCPsy) using M-15 culture medium and RNAsequencing data from psyllid and phloem 
samples, respectively. b, Heatmap highlighting CLas subsystems with highest flux activity 
in psyllid and phloem samples. Numbers represent the fold change increase of predicted 
flux. c, Analysis of predicted flux distributions from constraining the CLas models with 
RNA-sequencing data (phloem and psyllid), or culture medium M15 (Medium) compared 
to the predicted flux distribution for L. crescens BT-1 using M15 medium. Barplot shows 
the total flux carried by pathway by all the simulated flux distributions for all CLas and L. 
crescens strains. Correlation matrix showed that flux distribution cluster by constraints 
conditions independently of CLas strain (Supplementary Fig. 6), enabling to average the 
flux distribution by strain.  

Predicting genetic targets for HLB management. Identification of potential CLas 

essential genes can lead to the development of HLB management strategies by 

designing molecules that specifically block or inhibit these gene products. We simulated 

single gene knockouts, changing the reaction bounds of all reaction(s) associated to each 

gene, while maintaining the hostdependent constraints for the rest of the network. Fig. 5 

shows the phenotypic changes when media, psyllid RNA-seq data and phloem RNA-seq 

data constraints were applied to each of the six CLas models and the BT-1 model.  We 

found that host-dependent constraints not only affect growth phenotypes in different 

environments, but also affect gene essentiality by strain. The CLas strain YCPsy was the 

most sensitive, with 94 essential genes in comparison with the strains gxpsy, Ishi-1, 

psy62, FL17 and A4, which had 93, 91, 90, 89, and 87 essential genes, respectively (see 

Supplementary Fig. 7). Overall, the number of essential genes increased around 27±2% 

because of the host-constraints imposed on the models compared to media constraints 

(Fig. 5a, green bars). Most of the essential genes common across the six CLas strains 

are involved in purine and pyrimidine metabolism, panthothenate and CoA biosynthesis, 

fatty acid metabolism and gluconeogenesis (Supplementary Fig. 7). However, when we 

evaluated the unique differences by subsystem across the six CLas strains, we found 

that genes involved in fatty acid metabolism, gluconeogenesis, glycine, isoleucine, 

leucine, serine, threonine, and valine metabolism, the TCA cycle, transport reactions, and 

urea cycle are the most sensitive and provide potential targets for the development of 

HLB management strategies (Fig. 5b). A full list of genes by subsystem is given in 

Supplementary Table 6-8.   

Previously, a study of random transposon mutagenesis of L. crescens suggested that 

105 metabolic genes were essential33. Genome-scale models contain 71 of those genes 

and predict that 18 of those genes are essential, 12 reduce the growth rate, and 41 are 

not essential (Supplementary Table 8). We then compared the 18 essential genes that 

were identified both experimentally and in silico with genes overexpressed during CLas 

infection to pinpoint potential targets for HLB mitigation. During CLas infection of C. 

sinensis the enzymes DTMP kinase (EC 2.7.4.9), inorganic diphosphatase (3.6.1.1), 

coproporphyrinogen oxidase (EC 1.3.3.3), and protoporphyrinogen oxidase (EC 1.3.3.4) 

were overexpressed (t-test, p-value<0.05, fold change>3) and identified as essential. 
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Additionally, we compared all predicted essential genes (91) with genes overexpressed 

(t-test, p-value<0.05 and fold change>10, n=3) in the citrus cultivars Valencia and 

Washington navel orange (C. sinensis L. Osb.) and Tango mandarin (C. reticulata 

Blanco) and the CLas enzymes phosphoglycerate mutase (EC 5.4.2.12), dihydroorotic 

acid (menaquinone-8) (EC 1.3.5.2), ribonucleoside-diphosphate reductase (UDP) 

(glutaredoxin) (EC 1.17.4.1), and glutaredoxin reductase (EC 1.20.4.1) were selected. 

Together, these results suggest eight distinct enzymes, whose inhibition could reduce 

CLas pathogenicity. The full dataset of metabolic reactions that are potential genetic 

targets in the CLas strains studied here are shown in Supplementary Table 9 and 

Supplementary Fig. 6.  

  

Fig. 5| Predicted gene essentiality by strain and host. a, Breakdown of phenotypes 
of all the genes in the metabolic models. Gene essentiality predictions are shown for all 
six CLas strains and BT-1. Phenotypes are binned into three categories based on 
predicted growth rate after individual gene knock-out; no growth (essential genes - 
green), reduced growth rate (blue), and comparable growth rate to wild-type conditions 
(non-essential - yellow). The gene essentiality results are plotted for each strain under 
the three different constraint datasets (psyllid RNAsequencing data, psyllid; phloem RNA-
sequencing data, phloem; and culture medium M15, medium). Note that L. crescens BT-
1 only contains predictions for the culture medium, because it is not a pathogen found in 
either the psyllid or the citrus phloem. b, The contour plot shows the number of CLas 
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genes that have unique phenotypes across the three constraint datasets, meaning that 
some genes that are non-essential in culture medium became essential when 
constrained by host conditions. We found that genes reducing the growth rate were 
consistent among growth conditions, while categorizing genes as essential or non-
essential depended on the host. The number of genes that changed between essential 
and non-essential categorization under different host conditions is binned by subsystem, 
where yellow means maximum six genes changed in the subsystem, and dark blue is no 
genes changed in the subsystem. The complete dataset is provided in the Supplementary 
Table 6 and 7.  
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Discussion  

Constraint-based modeling allowed us to elucidate metabolic changes in Candidatus 

Liberibacter asiaticus (CLas) during growth in the psyllid host Diaphorina citri Kuwayama 

and infection of the plant host Citrus spp. This work represents the first systems biology 

modeling approach to understand the metabolic role of CLas, the putative vector-borne 

causal pathogen of HLB, in citrus infection. We generated high-quality, manually curated 

genome-scale metabolic models of the six CLas strains A4, FL-17, gxpsy, Ishi-1, psy62, 

and YCPsy (Fig. 1). All models combine genomic and biochemical information with 

available literature resources to date. Manually curated models are characterized by an 

unprecedented quality in annotation17,28,29, since they dramatically reduce the amount of 

possible misannotation caused by automated tools. In metabolic models, annotation is 

referred to as gene-protein-reaction associations. Compared to the genome annotations, 

approximately 24-28% of the gene-protein-reaction associations in the models were 

improved during the manual curation process, increasing the accuracy of predicted 

metabolic phenotypes (Supplementary Table 1).   

  

Metabolic models are broadly used because they can simulate the metabolism of 

organisms with minimal experimental data, such as substrate uptake rates31. When such 

data is not available, it can be generalized using experimental data from closely related 

organisms34. For this purpose, we reconstructed a model of L. crescens BT-1, a closely 

related, culturable microorganism. We generated constraints to simulate growth 

phenotypes based on BT-1 experimental data32. The BT-1 model was validated by 

accurately predicting growth rates across four culture media compositions (i.e. BM-7, 

M13, M14, and M15) and multiple substrates (e.g. fumarate, glucose, oxoglutarate) (Fig. 

2). In confirmation of these findings, citrate was recently discovered to improve the growth 

rate of BT-1 experimentally32. In addition, we experimentally confirmed our serine and 

other amino-acid predictions in L. crescens and the CLas-hairy root assays.   

  

After successful validation of the BT-1 model we performed simulations to understand 

CLas metabolism. We found an interwoven effect of media composition on phenotypic 

traits, such as growth rate and metabolic production capabilities, which identified citrate 

and amino acids, such as glycine, serine, proline, aspartate, glutamine, and glutamate, 

as metabolites with a significant effect on CLas and L. crescens BT-1 growth (Fig. 2d,3d). 

Furthermore, it has been observed that metabolites, such as glycine, serine, citrate, 

glycine, glutamic acid, inositol, and malate, significantly change their concentration during 

CLas habitation in the psyllid host35 and citrate, histidine, phenylalanine, and sucrose 

during infection of C. sinensis36.   

  

Genes essential for L. crescens BT-1 growth in vitro that are absent in CLas may be 

responsible for the failure of maintaining CLas strains in culture37. The lack of these genes 

suggests that CLas acquires aromatic amino acids, vitamins, saccharides, and fatty acids 
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from their hosts, as previously shown in other microbial communities27. We identified over 

109 metabolic reactions that are present in L. crescens BT-1 but missing across all CLas 

strains (Supplementary Table 2). Previous studies have also suggested that CLas 

species lost the ability to synthesize proline, phenylalanine, tryptophan, cysteine, 

tyrosine, and histidine in addition to other translation components that may compromise 

regulatory systems33,38. We confirmed all of these auxotrophies and found that the 

proline, aspartate, arginine and serine auxotrophies are CLas strain-specific. 

Additionally, we predicted auxotrophies for steroids, cofactors and vitamins such as 

biotin, carnitine, choline, coniferol, riboflavin, and thiamin (Supplementary Fig. 2).  

  

Using genome-scale metabolic models, we focused on understanding the metabolic 

behavior of CLas when it inhabits its two hosts. Application of modeling constraints based 

on CLas expression data enabled simulation and identification of metabolic changes at 

various functional stages, for example when CLas inhabits the psyllid or the plant. In vivo 

data (i.e. metagenomics and metatranscriptomics) are reliable sources of information for 

modeling uncultivable microorganisms. Host-specific (psyllid or plant expression data) 

constrained models predicted growth rates ~70% slower than media-constrained models. 

The predicted growth rate in the psyllid was higher than in the plant, as was previously 

observed experimentally39. These findings suggest different behaviors of CLas are 

dependent on its host (Fig. 4). CLas grows faster while inhabiting the psyllid, activating 

pathways related to nucleotide sugar metabolism, streptomycin biosynthesis, polyketide 

sugar unit biosynthesis, and cell envelope synthesis. Among these pathways, enzymes 

related to cell wall oligosaccharide enzymes were identified by screening all predicted 

flux distributions. It has been observed that CLas uses these enzymes to synthesize 

polysaccharides and thrive under different environments, especially in the presence of 

competitive bacterial biological agents40–42. These results suggest that in the psyllid host, 

CLas may activate the synthesis of antibiotics and antimicrobial precursors to compete 

with endogenous bacteria in the psyllid gut. On the other hand, in the citrus phloem, CLas 

may activate pathways that counteract plant defense mechanisms, such as the 

production of reactive oxygen species by NADPH oxidase43,44, or the synthesis of 

antimicrobial peptides and long chain fatty acids45,46 by activating reactions that depletes 

intermediaries of these toxic metabolites (e.g. orotic acid dehydrogenase, L-aspartate 

and glycolate oxidases). We also found that fatty acid metabolism was highly activated 

in CLas from citrus phloem samples, including enoyl-acyl reductase which has been 

associated with antibiotic resistance47.  

  

Significant progress has been made toward understanding the interactions between 

CLas and its hosts, and systems biology and omics tools can help to further unravel 

metabolic mechanisms associated with HLB initiation and progression as well as identify 

targets in CLas that can be used to develop HLB management strategies. Our results are 

consistent with and expand on prior findings. For example, other studies in L. crescens 

have shown that supplementation of amino acids to the culture media increases growth 
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rates33. Gene essentiality simulations (Fig. 5) agree with previous findings, revealing ABC 

transporters, cell envelope biosynthesis, and fatty acid metabolism to be crucial 

subsystems for CLas33,46,48. Additionally, we found genetic targets in metabolic pathways 

whose inhibition may block the growth of CLas, thus preventing spread of this destructive 

disease (Supplementary Fig. 7). The systems biology tools presented here allow for the 

simulation of thousands of conditions, by applying environmental and/or genetic 

constraints, which reveal the vulnerabilities of CLas across various environments and 

improve our ability to guide future research and management efforts to combat this 

pathogen.   

    

Methods  

Draft model reconstruction and manual curation. Reconstructions are biochemically 

and genomically structured networks that contain information about associations among 

genes, reaction stoichiometry, and reaction reversibility. Here, we used a semi-

automated process to reconstruct high-quality metabolic models, which comprises four 

fundamental steps: i) creation of an automated draft reconstruction, ii) draft refinement 

by manual curation, iii) conversion from reconstruction to mathematical model, and iv) 

model evaluation.  

Semi-automatic reconstruction methods reduce building time, while maintaining high-

quality architecture and prediction accuracy49. This method results in draft models which 

require refinement through manual curation. Draft models are generated based on 

protein-homology comparison between each protein sequence in the genome of the 

target microorganism (e.g. CLas) and the protein sequence of a manually curated 

reference model(s).  

The reference models used here were chosen from the BiGG Database50. Supplementary 

Fig. 1 shows the phylogenetic relationships between Liberibacter strains and bacteria 

with available reference models in the repository. Pseudomonas putida KT2440, iJN74651 

was the closest related microorganism to Liberibacter, followed by Yersinia pestis CO92, 

iPC81552. The model of Escherichia coli str. K-12 substr. MG1655, iML151553, was also 

used during the draft generation because it is the most extensively curated model to date. 

Table 1 shows the genome IDs of the protein sequences of CLas strains A4, FL17, gxpsy, 

psy62, YCPsy and L. crescens BT-1, which were used as input to The COBRA54 and 

RAVEN Toolboxes55 for MATLAB (The MathWorks Inc., Natick, MA).  
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 Table 1. Properties of the genome-scale metabolic models  

 

Microorganism  Genome ID  Model ID   Genes  Reactions  Metabolites   

Candidatus Liberibacter 

asiaticus   

A4  

  

34021.4  

  

A4  

  

283  

  

840  

  

837  

FL17  34021.11  FL17  272  818  807  

gxpsy  1174529.3  gxpsy  276  815  807  

Ishi-1  931202.3  Ishi-1  253  818  802  

psy62  537021.9  psy62  285  818  807  

YCPsy  34021.12  YCPsy  279  814  805  

Liberibacter crescens  

BT-1  

  

1215343.11  

  

BT-1  

  

372  

  

892  

  

887  

  

Each metabolic reaction in the reconstructed models was manually curated for their 

correct geneprotein-reaction association (GPR) using protein BLAST56 to compare 

protein sequences between each strain of Liberibacter in the multi-strain model with 

sequences of E. coli, P. putida, and Y. pestis using UniProtKB/Swiss-Prot databases57. 

Transporter protein sequences were identified and compared using the TCBD 

database58. Metabolic reactions where no gene association could be found underwent 

another round of curation, where literature was reviewed to find evidence for the 

presence/absence of these proteins. Reactions with no supportive literature or matching 

sequences were included in the model for gap filling to ensure the completeness of 

relevant pathways34.  The manual curation process was followed by model evaluation 

and validation. The reconstructions were analyzed for connectivity, mass and charge 

balance and converted into a functional mathematical model for simulation using The 

COBRA Toolbox31. Metabolic models were shared following the standard protocols for 

computational analysis59.  

Constraints and growth simulations. The seven CLas and BT-1 metabolic model 

reconstructions were constrained identically using the culture media BM-7, M13, M14, 

and M1532. All media compositions were simulated by setting a lower bound of −100 

(allowing unlimited uptake) on the exchange reactions for Co2+, Fe2+, H+, H2O, Na+, NH4, 

PO4, SO4. Supplementary Table 3 shows the media compositions and applied constraints 

for each culture media. Growth simulations were performed using the flux balance 

analysis procedure31. Constraints on biomass composition were imported from the 

reference model of P. putida KT2440, iJN74651.  



 

65 
 

The model topology was evaluated following the constraint-based modeling standard 

protocol34. The degree of metabolite connectivity (D) was determined by estimating the 

participation of metabolites in all reactions into the model (1). The matrix S is a feature in 

constraint-based modeling and its size is determined by the number of metabolites (rows) 

and reactions (columns) in the model. Reaction essentiality by metabolite was calculated 

by scanning the matrix S across all reactions. For the reactions in which each metabolite 

was found to participate the boundaries were set to zero and compound growth rate was 

estimated (µcomp,metabolite). The essentiality fraction was determined by the ratio between 

compound growth rate and the growth rate determined without any modification to the 

boundaries (wild type growth rate, µWT).     

𝐷𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦,𝑖 = ∑ 𝑆𝑏𝑖𝑛,𝑖,:  

                              (𝐴𝑐𝑜𝑚𝑝): 𝐴𝑐𝑜𝑚𝑝 = 𝑆𝑏𝑖𝑛 ∗ 𝑆𝑏𝑖𝑛𝑇    (1)  

  
 

Phenotypic experimental data  

Liberibacter crescens cultivation. M15 media consists of CaCl2•2H2O (1,320 mg/L), 

MgCl2 (1,068.2 mg/L), MgSO4•7H2O (2,778 mg/L), KCl (2,240 mg/L), NaH2PO4•H2O 

(1,007 mg/L), L-alanine (447.24 mg/L), L-arginine-HCl (1,777 mg/L), L-asparagine 

monohydrate (1,075.45 mg/L), L-cysteine-2HCl (56.38 mg/L), L-glutamic acid (1,502.2 

mg/L), glycine (859.51 mg/L), L-histidine hydrochloride monohydrate (2,366.11 mg/L), L-

isoleucine (687.36 mg/L), L-leucine (592.89 mg/L), L-lysine-HCl (1,464.85 mg/L), L-

methionine (678.9 mg/L), L-phenylalanine (789.62 mg/L), L-proline (940.61 mg/L), L-

threonine (459.8 mg/L), L-tryptophan (373.73 mg/L), L-tyrosine disodium salt (391.37 

mg/L), L-valine (644.31 mg/L), betaine monohydrate (0.36 mg/L), DL-ornithine 

hydrochloride (293.39 mg/L), methionine sulfoxide (18.2 mg/L), Dbiotin (0.1 mg/L), 

choline chloride (1,000 mg/L), folic acid (0.2 mg/L), myo-inositol (0.2 mg/L), niacin (0.2 

mg/L), D-calcium pantothenate (0.2 mg/L), para-aminobenzoic acid (0.2 mg/L), 

pyridoxine-HCl (0.2 mg/L), riboflavin (0.2 mg/L), thiamine-HCl (0.2 mg/L), L-aspartic acid 

(2,500 mg/L), DL-serine (2,500 mg/L), L-glutamine (358.04 mg/L), and citric acid (2,500 

mg/L)32. All ingredients were combined with the exception of tyrosine, which was first 

dissolved in 1M HCl before being added. Once all ingredients were dissolved, the 

medium was adjusted to pH 5.92 with 5M KOH and filter sterilized. Other derivatives of 

M15 (the different treatment media types) were prepared in the same way, but with 

differing concentrations of the components being examined (i.e. L-aspartic acid, DL-

serine, L-glutamine, and citric acid). The concentrations of all other components were 

kept the same as the original M15 recipe. M15basic media was made with minimal (0.1 
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mg/L) amounts of the treatment components (i.e. citrate, serine, and aspartate or citrate, 

serine, and glutamine) but was otherwise kept the same as the original M15 recipe.   

Liberibacter crescens (type strain BT-1T, 5ATCC BAA-2481T5DSM T 26877) was used 

for all experiments21. Glycerol stocks of L. crescens strain BT-1 in BM-7 complex media 

were used to inoculate M15 media, which was then shaken at 150 rpm and 28°C for 3-5 

days to grow sufficient quantities for the experiments. Bacteria were pelleted via 

centrifugation at 6,000 rcf for 10 minutes, re-suspended in M15-basic medium, which 

does not contain the treatment components (citrate, serine, and aspartate or citrate, 

serine, and glutamine) and shaken at 150 rpm and 28°C for 1 hour to remove any large 

traces of the treatment components. OD600 was measured, and bacteria were re-pelleted 

using the same conditions described above. Pelleted bacteria were re-suspended in 

sterile DI water and used to inoculate treatment media for growth to stationary phase: 

OD600 = 0.8. Treatment media tubes were grown in 5 ml volumes in 16x100mm tubes at 

150 rpm and 28°C. Growth was measured every 12-24 hours for 300 hours using a 

Spectronic-20 (Milton Roy, Houston, TX) spectrophotometer and OD600.  

CLas-Citrus hairy root culturing and in vitro assays. The ex vivo CLas-citrus hairy 

root cultures were generated using methods described previously60, with CLas-infected 

sour orange tissues (Citrus x aurantium L.) as ex-plant/inoculum source for CLas. Briefly, 

quantitative polymerase chain reaction (qPCR) validated CLas containing sour orange 

were identified and 510 cm shoots were excised for hairy root induction. The cut-end of 

the ex-plant was inoculated with fresh culture of Rhizobium rhizogenes (American Type 

Culture Collection strain 15834, OD 0.5) under gentle vacuum infiltration (~200 kPa). R. 

rhizogenes is a soil bacterium that naturally transforms plant cells to induce hairy roots 

at the point of contact by reprogramming plant hormone signaling 61.  In citrus, hairy root 

formation typically occurs in approximately 90 days, and because of the vascular 

connectivity between the shoot ex-plant, CLas naturally migrates into the newly formed 

hairy roots. Presence of CLas in the hairy root cultures was further confirmed by qPCR, 

using CLas-specific primers as described below. To determine the effect of amino-acids 

on CLas titers, in vitro assays were set up using the validated CLas-citrus hairy roots60. 

Briefly, the CLas-citrus hairy roots were surface sterilized with 70% ethanol and 2.5% 

sodium hypochlorite for five minutes followed by six washes with sterile water. 

Approximately 100 mg of CLas-citrus hairy roots were added to a multi-well culture plates 

and supplemented with B5+amino acid cocktail (glycine, serine, proline, aspartate, 

glutamine, and glutamate) concentrations (0, 0.1, 1 and 5 µM). An oxytetracycline 

(500ppm = 500mg/L) treatment was included as a CLas-inhibitor control for the in vitro 

assay. Four to five independent biological replicates were included for all treatments. The 

samples were vacuum infiltrated at 200 kPa for ~15 minutes to facilitate penetration of 

the media and nutrients into the hairy root cultures. The assay plates were placed on an 

orbital shaker at 40 rpm at~25°C and in dark. Fresh B5 medium was replaced at 3 and 5 

days after incubation. Samples were collected at 0, 3, 5 and 7 days after treatment and 

flash-frozen in liquid nitrogen and stored at -80°C until further use.   
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DNA extraction and qPCR analysis. All control and treated CLas-citrus hairy root 

cultures were lyophilized and homogenized in a MiniG 1600 (Spex Sample Prep) 

homogenizer at 1500xrpm for 30 seconds, with a single steel bead (2 times, re-freezing 

samples at -80°C in between). Total DNA extraction was carried out according to 

Almeyda et al. (2001)62. qPCR reactions were carried out in a CFX-384 Real-Time PCR 

Detection System (BioRad, Hercules, CA) with 25ng of DNA as template, using Sso 

Advanced Universal SYBR Green Supermix (BioRad, Hercules, CA), and the following 

primers for citrus GAPC2 (CsiGAPC2-F 5’-TCTTGCCTGCTTTGAATGGA-3’and 

CsiGAPC2-R  5’-TGTGAGGTCAACCACTGCGACAT-3’) and for the β-subunit od nrdB 

gene from CLas, RNR (RNRf 5’-CATGCTCCATGAAGCTACCC-3’ and RNRr 5’-

GGAGCATTTAACCCCACGAA-3’)63. The reactions were carried out under the following 

conditions: Initial denaturation 95°C for 3 minutes, followed by 95°C for 15 s and 55°C 

for 30 s for 40 cycles, and a final extension at 65°C for 5 s. Relative CLas titers were 

estimated using the ΔΔCt method 64. Briefly, the CLas Ct was first normalized to the 

housekeeping gene (GAPC2) to account for DNA template differences, and then to the 

0 days Ct which was set to 1 (or 100%). Growth rates at each time point were calculated 

using the initial CLas titer as a reference point. The minimal and maximal data were 

discarded before the ANOVA analysis. Calculations were performed using The 

Preprocessing Data and The Statistics and Machine Learning Toolboxes of MATLAB 

(The MathWorks Inc.).   

Expression data. RNA sequencing data collected from environmental samples was used 

to constrain the CLas models. The samples were obtained from the phloem-enriched 

samples from different citrus cultivars and from Asian citrus psyllid (ACP) alimentary 

canals as described below. For each growth condition, the storage and consumption of 

starch, calculated using experimental data, were taken into account (Supplementary 

Table 6).  

RNA extraction from citrus. Samples were harvested from 12 CLas-infected citrus trees 

grown in a greenhouse at the U.S. Horticultural Research Facility in Fort Pierce, Florida. 

Three trees were selected each from three different Citrus cultivars: Valencia orange 

(Citrus sinensis [L.] Osbeck) on Swingle citrumelo (C. paradisi Macf. X Poncirus trifoliate 

[L.] Raf.) rootstock, Tango mandarin (Citrus reticulata Blanco) on Sour orange rootstock, 

and Washington navel orange (Citrus sinensis [L.] Osbeck) on Sour orange rootstock 

(Supplementary Table 6). One to two years prior to sampling, the greenhouse trees were 

exposed to CLas-positive ACP for varying lengths of time between one week and one 

month, and CLas infection was verified using qPCR at or near the time of harvest.  

Four pieces of budwood that were roughly one year old and ~15 cm long were harvested 

from each tree and immediately placed on ice. Within 15 minutes, they were sampled 

from as follows: budwood was removed from ice and sprayed with CVS brand Health 

Alcohol Free Liquid Bandage Spray (CVS, Woonsocket, RI) to prevent surface 

contamination. After drying for three minutes, the bark was peeled from each piece and 

the inside surface located away from the cut ends was quickly scraped with a razor blade 

twice – first to remove surface contamination and potential xylem and second to collect 
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a phloem-enriched sample. Samples were immediately placed in PowerBead Tubes filled 

with Solution MBL and the Phenolic Separation Solution from an RNeasy PowerPlant Kit 

(Qiagen, Valencia, CA), which were held in a CoolRack (BioCision, San Rafael, CA) on 

dry ice. RNA was extracted using the RNeasy PowerPlant Kit following the kit protocol 

with two minutes of bead beating, eluted in 50 µl of RNase-free water, and stored at -

80°C for library preparation.  

RNA extraction from Asian citrus psyllids. Approximately 100 adult ACP were 

collected from CLas-exposed colonies maintained at the U.S. Horticultural Research 

Facility in Fort Pierce, Florida using an aspirator. Alimentary canals were dissected from 

ACP in a weight-boat containing Solution PM1 from an RNeasy Power Microbiome Kit 

(Qiagen, Valencia, CA) placed on ice, and deposited in two PowerBead Tubes containing 

Solution PM1 (50 canals each) held in a CoolRack (BioCision) on dry ice. RNA was 

extracted using the RNeasy PowerMicrobiome Kit following the kit protocol with one 

minute of bead beating, eluted in 50 µl of RNase-free water, and stored at -80°C for 

library preparation.  

Library preparation and sequencing. Alimentary canal sample cDNA libraries were 

prepared using the ScriptSeq Complete Gold Kit (Yeast) (Illumina, San Diego, CA), 

following kit protocols and performing ribo-depletion. Citrus sample cDNA libraries were 

prepared using the ScriptSeq Complete Kit (Plant Leaf) (Illumina, San Diego, CA), again 

using provided protocols and ribo-depletion. In both cases, ScriptSeq Index PCR Primers 

(Illumina, San Diego, CA) were used for barcoding samples. RNA Sequencing was 

performed using Illumina's HiSeq2500 platform. Raw RNA reads were trimmed using 

TrimGalore (version 0.4.4) including adapter removal and quality control: low-quality ends 

from reads (Phred score < 20) were trimmed and reads less than 20 bp were discarded. 

Next, read quality was checked using FastQC (version 0.11.7). To discard host and 16S 

rRNA reads, C. maxima (Burm.) Merr. genome (NCBI_Assembly: GCA_002006925.1) 

and bacterial 16S rRNA sequences (SILVA database: https://www.arb-silva.de/) were 

chosen as reference templates. Valid reads were aligned to reference templates using 

bowtie2 (version 2.3.4.1) with parameters set by the flag verysensitive. Unmatched reads 

were picked out and converted to fastq format using samtools (version 1.8) and 

bam2fastq (http://www.hudsonalpha.org/gsl/information/software/bam2fastq), 

respectively. To count the FPKM (fragment per kilobase per million mapped reads), reads 

were mapped to 7 Liberibacter strains: CLas strains A4 (GCF_000590865.2), FL17 

(GCF_000820625.1), psy62 (GCF_000023765.2), YCPsy (GCF_001296945.1), gxpsy 

(GCF_000346595.1), Ishi-1 (GCF_000829355.1) and L. crescens BT-1 

(GCF_000325745.1).   
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CONCLUSIONES 

 

El uso de algoritmos y estrategias semiautomáticas permitieron obtener en este trabajo 

seis modelos metabólicos de un consorcio microbiano nitrificante presente en aguas 

residuales en un período de tiempo relativamente corto, comparado con estrategias 

manuales y manteniendo la calidad en las predicciones fenotípicas. La optimización de 

los parámetros para la construcción inicial de los modelos metabólicos utilizando como 

pilar la herramienta BLAST cumplió un rol fundamental dentro del proceso de desarrollo 

de los modelos de forma semiautomática, proporcionando modelos bases funcionales 

de los microorganismos identificados en el metagenoma del consorcio nitrificante. 

Además, las estrategias asociadas al refinamiento de los modelos bases diseñadas en 

el presente trabajo aumentaron considerablemente la calidad en las asociaciones genes-

proteínas-reacciones en cada modelo generado. Los modelos metabólicos resultantes 

permitieron identificar la capacidad metabólica de cada microorganismo modelado, ya 

que se realiza un análisis a nivel genoma de todas las reacciones metabólicas 

involucradas, y, por lo tanto, determinar con alta fidelidad (mayor al 90%) procesos 

metabólicos internos, así como producción e intercambio de metabolitos de interés, al 

evaluar las predicciones realizadas con información experimental presente en la 

literatura. Por último, se evaluaron las capacidades metabólicas para intercambiar 

metabolitos de cada uno de los seis microorganismos, de tal forma que se identificó 

adecuadamente las principales rutas metabólicas de cada microorganismo en su 

participación en condiciones experimentales de tratamiento de aguas residuales. 

Perspectivas 

Creemos que los modelos desarrollados en el presente trabajo proporcionan un paso 

valioso en el camino hacia una mejor caracterización de estos importantes 

microorganismos aislados como parte de una comunidad microbiana. El diseño y la 

evaluación de diferentes comunidades microbianas provenientes del consorcio 

microbiano nitrificante a partir de los seis microorganismos estudiados en el presente 

trabajo desde enfoques de bioinformática y biología de sistemas podría mejorar el 

entendimiento que tenemos actualmente de los sistemas biológicos y su uso en el 

tratamiento de aguas residuales 
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