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Abstract

We work out in detail the Drinfeld module over the ring
— 2 _ 3
A=TFox yl/(y +y=x"+x+1).

The example in question is one of the four examples that come from
quadratic imaginary fields with classnumber h = 1 and rank one.

We develop specific formulas for the coefficients dy, and ¢ of the
exponential and logarithmic functions and relate them with the product
Dy of al monic elements of A of degree k. On the Carlitz module,
Dy and dy coincide, but this is not true for general Drinfeld

modules. On this example, we obtain a formula relating both
invariants. We prove also using elementary methods a theorem due to
Thakur that relate two different combinatorial symbols important in
the analysis of solitons.
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1. Introduction

Let Fy beafinite field of characteristic p and K be a function field over
IF‘q. After we choose «, a fixed infinite place of K, let A be the ring of

regular functions outside of « and let K, be its completion. Now take C,

to be the completion of an algebraic closure of K.

Let C,{t} be thering of twisted polynomials, i.e., the noncommutative
ring of polynomials Zairi with coefficients in C,, such that 1z = z%. A
twisted polynomial f =ag+ a1+ + adrd e Cy{t} isidentified with the
IF 4 -linear endomorphism of C,,,

d
z> f(2)=agz+az% +-- +agz% .
A Drinfeld A-module is an ¥ -algebra homomorphism p @ A — C,{t}

injective, for which p(a) = at® + higher order terms in 1. The action
a-z=p(a)(z) of Ain C, makes C,, into an A-module, and hence the
name “Drinfeld module”.

For each Drinfeld module p we associate an exponential entire function e
defined by a power series

o0 ql
«z) = sz_. foral ze C,.
i=0

This exponential function satisfies the following fundamental functional
equation:

&(az) = pa(e(2)), )
for ze C,, and a € A where p, standsfor p(a).

The Carlitz module, defined by Carlitz [1] in 1935, is given by the
IF 4 -algebra homomorphism C : Fy[t] — C,{t} determined by C; =t + 74,
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Equation (1) produces &(tz) = te(z) + &(2). It follows that
© (tqi B t)zqi 00 Zqi+1

2 d :i;) T

i=0
By equating coefficients we get a unique solution d,, = [n]drﬁ‘_l, where

[n] = (tOln —t) and dy = 1. Therefore, d,, = [n][n - 1] ~--[1]qn71 and it is
easily seenthat d,, isthe product of all monic polynomials of degree n.
Since €(z) is periodic, it cannot have a global inverse, but we may
formally derive an inverse log(z) for &z) as a power series around the
origin. By definition €log(z)) = z Since €(z) satisfies the functional
equation e(tz) = te(z) + &(2)9, it follows that tz = log(te(z)) + log(e(z)?).
Replacing log(z) for z we obtain tlog(z) = log(tz) + log(z?). Let

log(z) = D’ 2 /¢;. Then

(t—tq )-Zq B 24
Z £ - Z 4
i=0 i=0

It followsthat ¢;,; = —[i +1]¢;. Therefore ¢; = (<1)'[i][i — 1]+ [1].

We follow the ideas developed in the Carlitz module case, but applied to
the Drinfeld module over A = Fy[X, y]/(y2 Fy =X+ X+ 1). We explore

specific ways to understand the mentioned example, which is one of four
examples provided from imaginary quadratic fields with class number h =1
[4] and rank 1. The formulas obtained are compared with Theorem 4.15.4 of
[5] and are related to solitons, as exposed in Chapter 8 of the same reference,
and Theorem 3 of the article [6].

2. Action of the Drinfeld Module on the Variablesx and y

In our example, we have d, =1, v, (X) = -2, v.(y) = -3, and using
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that deg(a) = -v.(a)d,, Vvae A, it follows that deg(x)=2 and
deg(y) = 3.

Based on it, the Drinfeld module p that we are considering has rank 1
and is determined by its values in x and y (actualy, it is enough to know its
valueinoneelement a € A, see 2.5in[5]). According to the aforementioned

degrees and that the unique sign in our example is +1, we obtained that
_ 2
Py = X+ XT+ 1%,

2 3
Py = Y+ WT+ Yo1° +1

with X, v, Yo € A Now, using the commutative property of the Drinfeld
module pypy = pypy and equating on degree 1, we get

X(y? +y) = 0O + x).

3

Next, using the equation on the curve y2 + Yy =X + x+1 and dividing, we

obtain

— 1 1
Y1 =X X+1+ 5 .
X"+ X

2

This implies that x> + X| % and y2 + Y| y1. Assuming that X = X© + X, it

is also obtained that y; = y2 + Y. Now, equating on degree 2, one has the
equation

(< X)yo =~y + yixg + (y* + y). @)

But, we can use the identities
yiry= (P +y)Pyi+y
= (Y2 +y) (Y +y+1)
= (Y +y)(C+x)

= (Y + Y) (¢ + ) (x+1)
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and

X+ x = (% + x) (X% + x+1).

2

So dividing the equation (2) by ¥ = x“ + X, and substituting the values

X and y;, we get
Y208 + x+1) = (y? + Y) (06€ + x+ y* + y) + (y° + Y) (x+ 1)
= (Y + Y +y+x*+1)
= (y? + y)(x3 + X2+ X).

Thus, clearing X* + X + 1, we have Yo = x(y2 +y), asitisknown in
the literature [3, Example 11.3].

3. Exponential and L ogarithm Coefficients

We find recursive formulas for the coefficients of both the exponential
&(z) and the logarithmic log(z) functions associated to the Drinfeld module

from Section 2.
Write

izd— Y a7

i=0

and

log(z) = i% ihzzi,
i=0 i=0

where g = di‘l and b = Ei‘l. Using that
&(xz) = px(&(2))
= xe(2) + [e*(2) + €*(2),
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where [1], = x? + x. Then, expanding both sides of the equality:

e02) + xe(2) = [L,e*(2) + *(2),

we have on the left side:

e(xz) + xe&(z) = i:(x2j +X)a; z2j
j=0
- Slia?
j=0

. j
= [1]xa122 + Z[J]xaj 22 ;
j=2

where [j], = 2 4 x Now, expanding the right side, we get:

[1])(62(2) + e4(z) = []_]Xi aizzz”l N i ai422i+2.
i=0 i=0

©)

By setting j =i +1 inthe first sum, and j =i + 2 in the second sum, we

obtain:

[1]Xe2(z) +e*(2) = [1]Xi ajz_lz2j + i af'_zzzj

Il
[=Y
Il
N

2 4
[Ucaj_1 +aj_2

[ilx

aj = for j > 2

(4)

©)
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Subsequently, we assume that ag = 1, i.e., the exponential is normalized.

Notice that if we do not normalize the coefficients, the exponential function
varies by a factor given by the initial term. If we denote €z, ay) to this

exponentia function, it is easy to see that
&z a) = a(2), (6)
where €(z) isthe normalized exponential.

Now, in terms of the d j’s (assuming also, the normalization of the

exponentia), the recursive formulais as follows:

dy=dd =1

[ild?qd] 5
[1]xdj4—2 + dj2—1

j = for j > 2. @)

Similarly, for the logarithm function, we have that
xlog(z) = log(px(2))
= log(xz + [1])(22 + 7%
= log(xz) + Iog([l]xzz) + Iog(z4),
from which it follows that
xlog(z) + log(xz) = Iog([l]xzz) +log(zh).
So, we expanded the left side to

xlog(z) + log(xz) = Z:(x21 + X)b; 22
j=0

_ Z[j]xbj 2 )

j=1

0



1010 Victor Bautista-Anconaet al.
Notethat [0], = 0. Theright side must be
N o S R i+2
log([1],z%) + log(z*) = Z [1])2( bz + Z hz% .
i=0 i=0

Again, by setting j =i +1 inthefirst sum,and j =i + 2 in the second

sum, we obtain

jog([1l22) + 1og(z*) = 102 + 3 (@ by +by_0)22 . ()
j=2

Comparing the terms in the equations (8) and (9), we obtain the recursive
formulas:

b, = | 122 for > 2. (10)

Now again, if log(z, by) is the logarithmic function with initia term by,
and log(z) = log(z, 1) isthe normalized logarithm, by the recursion formula,
we deduce the relation:

log(z, by) = b log(2). (12)
Interms of values /;’ s, the recursions are as follows:
11 =",
1 liali-
0= Lihetjatj 2 for j > 2.

Y]
2
[1]x gj—z + Ej—l
4. Formuleefor Computing p,

The first formulais recursive and is in the spirit of Proposition 3.3.10 in

[2].
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Assume that Pa=zszopa,ka with d = deg(a). We will use again
commutativity pypa = papx and the explicit expression: py = x + [1],7

2. Then, multi plying

d
PxPa = (X+[lt+ 12)(2 Pa, ka}

k=0

d
kil, 4 k2
Z Xpa, kT + [xp5 Kt + pa k%)

and multiplying
d
PaPx = [Z Pa, kT J(X+ [yt + )

d
k+1 k+2
Z X2 Pa 12 Pa kT + pa kT H?).

By comparing terms arecursive formulais obtained

Pao =2 (first term in recursion),
Pa1 = a’+a (comparing degree k = 1),
k-1 2 4
1 a1+ _ 1 a1+ _
pakz[]x Pa, k-1 T Pa,k 2+[]xpa,k1 Pa, k 2,fork22.
' [k]x [k]x

Note the similarity to the recursive formulas for a;’s and bj’s in the
previous section, equations (5) and (10). The same phenomenon occurs in the
Carlitz module, but in such a case, thereis only a single summand.

Another way to calculate p,, is based on the use of the exponential and

the logarithm functions and their formal development as power series. We
know that
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e(alog(2)) = pa(&(l0g(2)) = pa(2)-

Using power series asin the previous section, we get to

0 k . .
2l ol | oK
pa(2) =D | D ajbija® |z
k=0\ j=0
=2 > py .
k=0 j=0djlk_j

The combinatorial terms in the sum, are the ones that Thakur used to
develop his aternative perspective on solitons [6].

We introduce the following notation used hereafter:

k j
Pk (W) = {(:::} = Z Wz.

. 2l
J:Odjfk_j

Hence, since p, =Zpa,kfk is @ monic polynomia in t of degree deg(a),

we havethat p(a) = 0 if deg(a) < k; and py(a) =1 if deg(a) = k.
5. Comparing the Polynomials py(w) and g (w)

Define the following sets:
A ={ae A:deg(a) < k},
A ={ae A:deg(a) = k}

and the polynomial

aw =[] (w+a).
acA g

Clearly, by the last paragraph in the previous Section 4, every a € Ay

isaroot of py(w). Thus,
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— (W)
W= o w

is a polynomial. In addition, as pi(w) = a = /3 = 0, p(w) and R (w)
have no double roots.

In order to calculate the polynomial R, (w), suppose

k .
|
(W) = D A w?
i=0
and
k-1 i
(W) = D" B iw? . (12)
i=0
Then, we have the following result:
1 1 Bfyoo
Theorem 5.1. R (w) = —g(w) + C, where C = +—.
dy dk-1 dy

Proof. Only for the purpose of this proof, suppose k is fixed and write
A = A¢i and B = By ;. Now, directly dividing py by g, using that g

k-1
ismonic, the first term of the quotient ratio is Asz . Then, in thefirst line
of the long division, we have:

k—1+2k—2 k—1+2k—3 L

ABy_oW + ABy 3w

et
k-1 k-1
ABW 14 A WP+ lower terms,

k-2
This implies that the next term of the quotient is AkBk_zvv2 , and

therefore, multiplying by the summands of g, after cancellation of the term

2k—1+ 2k—2

ABy_ow , hew summands will be incorporated into the residue in

the positions corresponding to the powers:
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Hence, al the new terms fall into the “lower terms’ of the long
k-1
division with exception of the coefficient on w? . This coefficient is
2
A1+ ABi-2.

When continuing the division and canceling the terms of the form
k-1, o] k-1
AkBjW2 +2/ for j < k-2, the terms equal or higher to w?  are not

affected. This ensures that the obtained quotient is:
k-1 k-2 k-3 5
AW+ ABC W T AB W e+ ABgW + Ay + ABE 5.

The result follows, using that A, = di* and A 1 = dic %y O

6. Coefficient Formulasfor g.(w)

For k > 2, set
k
X2, if kiseven,
t = 5
yx 2, if kisodd.

Now, it is clear that deg(ty) = k and that the set {1, to, ..., ty_1} isa
basis of the vector space A . Define Dy :=ek(tk)=Ha€Aka. Thus, for

k>3,

g (w) = H (w+a)= H (W+a) H (w+a)

acA acAck-1 ae A1
= H (w+a) H (W+tg_q+a)
acAck-1 acAck-1

e 1(W)e_1(W+t_1) = 65 (W) + D1 - g _g(w).  (13)
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Expanding the right side of the equation (13), we find recursive formulas
for the coefficients By ; in (12):

2

i 2 k=2 i
Bk_:]_'iVV2 J + Dk—l[z Bk—l,iW2 ]

k
(W) + Dic1 - Ba(W) = [
i=0

i=0

=~
[N

. k-2 .
2 | |
Bk_]_'i_]_WZ + Z Dk—lBk—l,iWZ .
i=0

I
[

i
Indeed, we have
Bx,0 = Dk-1Bx-1,0 = Dk-1Dk-—2 - Dy,
Bx,i = Dk_1By_1,i + BE_1i1,
B k-1 = Bkgk-2 =" =Bg1=1

Before developing explicit formulas for the coefficients By ;, we

introduce the following symbols:
[, = W2+ W,
K], = W2+ w
It is not difficult to prove that these symbols satisfy the following:
Lemma 6.1. Properties of the symbol [k],,.
@ B = K2,
() Mpa,,= Ky, »

©) [k]\/\/1+W2 = [k]wl + [k]wz’
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(4) [k +1],, = [KIg + [,
5 Ky = X 202

Notice that g.(w) isapolynomia on [1], of degree 2K=2 set

k-2 i
aW) = > Tiil1fg-
i-0

Next, we will find specific formulas for the coefficients Ty ;'s. First,

define the following functions:

Sh,r (X, X2, o0y Xg) = Z H)ﬂzj

N2ig>ip>--->ip 21 j=1

n—j+1-i i

We have the following lemma:

Lemma 6.2. Properties of thesums S;, (%, X2, ..., Xp).

(1) Sho(X - Xp) =1,

2 2n—1
(2 S0 104, o Xn) = Xn F X1+ F

2
) Sh+1,r(X1’ o Xng1) = Sn,r(xl’ s Xn) F Xn+1Sn,r—1(X1’ oy Xp)-
Proof. The first two assertions are immediate.
For the third, note that:

2
n—j+1-i j

Shr 04 o %) = > II¥

N>ip>io>--->iy 21 j=1
n+1—j+1—ij

-2 I e

n2ip>ip>--->ip 21 j=1
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On the other hand,

r-1 n-j+1-ij
X +1Sh, r-1(X0 s Xn) = Xni1 Z H )ﬁzj

nNig>ip>--->ip_q21 j=1

P n—j+1-ij
J

z 2
= Z Xn+1 )ﬁj
j=1

Nip>ip>--->ip 121

1017

(15

Now, making iy = n+1and ij,q =ij (moving the variablej to j +1),

we abtain that (15) becomes

2 erYﬁ-

N+l=i1>ip>--->ip 21 j=1

n+1—j+1-i j

(16)

Notice that the variable X;; with exponent n—j+1-i; in (15)

coincide with the variable Xii withexponent n+1— j +1-1ij,q in(16).

Now, clearly the sum of (14) and (16) proves the lemma.

Proposition 6.3. For
k=2 ,
acw) = > Tiillly,
i=0
the following holds
Te,i = Sk—2,k-2-i(D2, D3, ..., Dx_1),
where

D = &(t).

Proof. Using the identity

ac.1(W) = 62(w) + Dya (W), for k > 2,

O
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we abtain the following recursive equations:
Tk+1,0 = DkTk 0
Tirti = Tdi1 + DT i
Tk, k-1 =1

Then, from induction suppose that the proposition is valid for Ty ;, using the

recursive form, we get

2
Tk+1,i = Tii-1 + DiTk, i
2

= S_2 k-2-(i-1)(P2: D3, s Dicc1) + DySc2, k-2-i (D2, D3, -y Dia)

2
= S{_2 k-1-i(D2, D3, ..., Dy_1) + DyS_2, k-1-i-1(D2, D3, ..., Dx_1)
= $-1 k-1-i (D2, Dg, ..., Dy).

The last equaity follows from Lemma 6.2. Now, the result
follows from verifying that the coefficients T, ; coincide with

Sk-2 k-2-i (D2, D3, ..., Dx_1) for somefirst small values of k. O
Forsimplicity, Set S(—2,k—2—i = Sk—2,k—2—i(D21 D3, ceny Dk—l)'
Corollary 6.4. The coefficients of the polynomial

k-1 i
(W) = Y By jw
i=0

are given by the formulas
B, k-1 =Tk k-2 = &-20=1
Bai = Tk,i + Tk,i-1 = Sk-2,k-2-i + Sk-2,k-1-i» for 1<i<k-2,

Bx,0 = Tk,0 = Sk—2,k—2 = Dx—1Dk—2 - D2.
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Proof. Note that

k-2 i
a(w) = > T i1
i=0

k=2 i
= > Tei(w+w?)y?
i—0

k-2 .
k-1 i
= Tk, k_2VV2 + Z (Tk,i + Tk’i_l)Wz + Tk,0W. ]
i=1

7. Relationship Among the Values dy, ¢/, and Dy

Basicaly, these relationships are corollary of Theorem 5.1 and the
explicit expression of the coefficients By ; developed in the previous

section.

If we evaluate the polynomial equality

2
pi() = K 1 Co (w) a

in w = ty, weget that
_ D¢
1= d—k+CDk
Solving for C, we obtain

_ 1 Dk_dk+D|%

Now, using the definition of C in (5.1), we al'so have that

k-2
C

1 N 1+ D,f_1+ D,f'_z +o D%
dy-1 dy ’
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since
k-3

)2,

2 2 2
Bl k—2 = 1+ Dg_1 + D_p +---+ D3

from Corollary 6.4 and part (2) of Lemma6.2.
Multiplying by Dydy, we obtain

k-2
Dicdc Dy(l+ D24+ D 5 +--+ D3 )

dy_1

CDydy =

and using (18), we have

k-2
dy + D,f = [;k—dk+ D (1+ DE_1+ Dﬁ'_z ot D22 ).

Therefore
dk(1+ %} = Dy(1+ Dy + DZ g+ + Dzzk_z),
and hence
d = %ajL Dy + DZ g+ + D22k_2)
= %' By+1,k-1- (19

Now, using the recursive formula (7) is easy to see that
dy = [1],
and also
D, = ey(ty) = 1}, = [1,,

equation (19) gives arecursive procedure to calculate dy, in terms of values

Dj’s with 2 <i < k.
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Now, equating the coefficients of the linear terms of the polynomials in

(17), we obtain that

1
7o = CDk1Dx-2--D2
K

and using (18), we conclude that

_ Dy dk
(dy + DZ)(Dy_1Dy_2 - Dy)

Ly

We summarize the above discussion in the main result of the article.

Theorem 7.1. Recursive formulas to compute 7, and dy values in

termsof Dy’ s,

(1) dy = Dy,

D.d,_ k-2
(2) dy = ﬁ(m Dk +DZq+-+D3 ),
3 b = Pic

5 .
(dy + DE)(Dx-_1Dx—2 -+ D2)
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