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Abstract

In this paper we study a model of HCV with mitotic proliferation, a saturation infection rate and a discrete
intracellular delay: the delay corresponds to the time between infection of a infected target hepatocytes
and production of new HCV particles. We establish the global stability of the infection–free equilibrium
and existence, uniqueness, local and global stabilities of the infected equilibrium, also we establish the
occurrence of a Hopf bifurcation. We will determine conditions for the permanence of model, and the
length of delay to preserve stability. The unique infected equilibrium is globally-asymptotically stable for
a special case, where the hepatotropic virus is non-cytopathic.
We present a sensitivity analysis for the basic reproductive number. Numerical simulations are carried
out to illustrate the analytical results.
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1 Introduction

The mathematical theory of viral infections has been around during the last decades. This theory has proven
to be valuable on the understanding of the dynamics of viral infections and in the evaluation of effectiveness
of antiviral therapy. The most studied viruses in the mathematical theory of viral infections are human
immunodeficiency virus (HIV), hepatitis C virus (HCV), human T-lymphotropic virus type 1 (HTLV-1) and
hepatitis B virus (HBV).
In the mathematical theory of viral infections the basic models are concentrated on two steps of the lytic
cycle: viral entry and release. One of the most well-known models for viral dynamics includes only three
state variables, one variable for uninfected target cells, a second variable for infected cells, and a third
variable for virions or free virus particles [16, 17, 18]. The basic model of viral dynamics that has been
formulated by Neumann and co–workers [16] for HCV dynamics and this has been applied to the analysis
of response to antiviral therapy. The ordinary differential equations (ODE) model is as follows:

Ṫ (t) =s− dT (t)− (1− η)bV (t)T (t),

İ(t) =(1− η)bV (t)T (t)− µI(t),

V̇ (t) =(1− ǫ)pI(t)− cV (t),

Here x(t), y(t) and v(t) denote the concentration of uninfected hepatocytes (or target hepatocytes), infected
hepatocytes and virions or free virus particles, respectively. All parameters are assumed to be positive
constants. Here, target cells are generated at a constant rate s and die at rate d per uninfected cell. These
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cells are infected at rate b per target cell per virion. Infected cells die at rate µ per cell by cytopathic effects.
Because of the viral burden on the virus-infected cells, we assume that d ≤ µ. Parameter p represents the
average rate at which the hepatitis C virus are produced by infected cells and c is the clearance rate of virus
particles. Parameter η is the efficiency of drug therapy in preventing new infections, and ǫ is the efficiency
of drug therapy in inhibiting viral production.
The intracellular viral life-cycle is an important process to consider in mathematical models. In the mathe-
matical theory of viral infections, the intracellular delays of viral life cycle are modelled by delay differential
equations. This class of models are concentrated on two intracellular delays: The first delay represents the
time between viral entry into a uninfected-target cell and the production of new virus (See, [2, 3, 8, 10, 13, 29])
and the second delay corresponds to the time necessary for a newly produced virus to become infectious
virus particles (See, [10, 23, 26, 29]).
The first model that included a intracellular delay was developed by Herz and co–workers [8], this model
incorporate the delay between the time a cell is infected and the time it starts producing virus. Subsequently,
Li and Shu [14] studied the global stability of the associated equilibrium points for this delayed system.
Tam [23] suggested an virus dynamics model with virus production delay. Zhu and Zuo [29] studied the
basic model of viral infections with two intracellular delays: cell infection and virus production. Huang,
Takeuchi and Ma [10] derived a class of within–host virus models with a nonlinear incidence rate and discrete
intracellular delays, followed by its global analysis.
The basic model of viral infections [8, 14, 29] assumes a source of uninfected cells but ignores mitotic
proliferation of uninfected cells or infected cells. Later on, Dahari and co–workers [4, 5] for hepatitis C
viral, extending the basic model [16, 17, 18] include mitotic proliferation terms for both uninfected and
infected hepatocytes. Here they assume that the proliferation of cells due to mitotic division obeys a logistic

growth law. The mitotic proliferation of uninfected cells is described by aT
(
1− T (t)+I(t)

Tmax

)
. New infectious

transmission occurs at a rate bT (t)V (t), while new mitotic transmission occurs at a rate aI(t)
(
1− T (t)+I(t)

Tmax

)
.

Both infected and uninfected cells can proliferate with maximum proliferation rate a, as long as the total
number of cells, T (t) + I(t), is less than Tmax. The ODE model is as follows:

Ṫ (t) =s+ aT

(
1− T (t) + I(t)

Tmax

)
− dT (t)− (1− η)bT (t)V (t),

İ(t) =(1− η)bT (t)V (t) + aI(t)

(
1− T (t) + I(t)

Tmax

)
− µI(t),

V̇ (t) =(1− ǫ)pI(t)− cV (t).

In other words, the hepatitis model includes mitotic proliferation of uninfected cells, and mitotic trans-
mission of infection through infected cell division. Also, this model assumed that infection could occur
instantaneously once a virus contacted a target cell to infect a uninfected target cell. Hu and co–workers [9]
introduced a discrete time delay to the hepatitis model to describe the time between infection of a hepatocyte
and the emission of viral particles. Subsequently, Vargas-De-León [25] studied the parameter conditions for
global stability of hepatitis model with mitotic proliferation for both uninfected and infected hepatocytes.
The hepatitis model given in [4, 5] without delay, coincides with the HIV model studied in [27] for which
the global stability analysis was completed.
In several of models with or without delay described above, the process of cellular infection by free virus
particles are typically modelled by mass action principle, that is to say, the infection rate is assumed to occur
at a rate proportional to the product of the abundance of free-virus particles and uninfected target cells. This
principle is insufficient to describe the cellular infection process in detail, and some nonlinear infection rates
were proposed. Li and Ma [13] and Song and Neumann [22] considered a virus dynamics model with monod
functional response, bT (t)V (t)/(1 + αV (t)). Regoes, Ebert, and Bonhoeffer [19] and Song and Neumann
[22] considered a virus dynamics model with the nonlinear infection rates bT (t)((V (t)/κ)p)/(1 + (V (t)/κ)p)
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and bT (t)(V (t))q/(1 + α(V (t))p) where p, q, κ > 0 are constants, respectively. Recently Huang, Takeuchi
and Ma [10] considered a class of models of viral infections with an nonlinear infection rate and two discrete
intracellular delays, and assumed that the infection rate is given by a general nonlinear function of the
abundance of free-virus particles and uninfected target cells, F (T (t), V (t)), where the function F (T (t), V (t))
satisfies the concavity with respect to the abundance of free-virus particles. Such condition is satisfied by
several well known infection rates. The DDE model given in [10] without delay is studied by Korobeinikov
in [11].
Motivated by the above comments, in the present paper, we proposed a model more realistic by using an
infection rate that saturates and a discrete intracellular delay. We consider the following delay differential
equation (DDE) model

Ṫ (t) =s− dT (t) + aT (t)

(
1− T (t) + I(t)

Tmax

)
− bT (t)V (t)

1 + αV (t)
,

İ(t) =
bT (t− τ)V (t− τ)

1 + αV (t− τ)
+ aI(t)

(
1− T (t) + I(t)

Tmax

)
− µI(t),

V̇ (t) =pI(t)− cV (t).

(1)

The assumptions are the following. We assume that the contacts between viruses and uninfected target cells
are given by an infection rate bT (t)V (t)/(1+αV (t)), it is reasonable for us to assume that the infection has
a maximal rate of b/α. On the other hand, to account for the time between viral entry into an uninfected
target cell and the production of an actively infected target cell, we introduce a time delay τ that represents
the time from entry to production of new virus.
From the point of view of applications, the study of the asymptotic stability of equilibria, the permanence
and the existence of orbit periodic are interesting topics in biological models. Particularly, the qualitative
analysis of the models reveals the existence of scenarios possible of a viral infection. A first scenario is that the
viral population is eventually totally cleared. Mathematically, this means that the infection–free equilibrium
state is asymptotically stable. Biologically, the permanence characterizes that the virus is not cleared. The
permanence take care of the second and third scenarios, which will be described below. A second scenario
is that the infection becomes established, and that the virus population grows with damped oscillations, or
unimodal growth, that is the infected equilibrium state (interior equilibrium with all components positive)
is asymptotically stable. A third scenario is that the virus population grows with self-sustained oscillations,
is that the interior equilibrium state is unstable.
In this paper, we shall study the possible scenarios of virus dynamic model (1). The paper is organized as
follows. In section 2, we establish the positivity of solutions. In the section 3 we prove the existence of the
equilibria, we perform the local stability analysis and the global analysis. The Hopf bifurcation analysis is
presented in section 4. Conditions for the permanence are establish in section 5. In section 6, we perform
an estimation of the length of delay to preserve stability. The numerical validation is found in section 7, a
sensitivity analysis is presented in section 8 and finally we draw a conclusion in section 9.

2 Positivity of solutions

We denote the Banach space of continuous functions φ : [−τ, 0] → R with norm

||φ|| = sup
−τ≤θ≤0

{|φ1|, |φ2|, |φ3|, }

by C, where φ = (φ1, φ2, φ3). Further, let

C+ = {(φ1, φ2, φ3) ∈ C : φi ≥ 0 for all θ ∈ [−τ, 0], i = 1, 2, 3} .
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The initial conditions for system (1) are

T (θ) = φ1(θ) ≥ 0, I(θ) = φ2(θ) ≥ 0, V (θ) = φ3(θ) ≥ 0, θ ∈ [−τ, 0], (2)

where φ = (φ1, φ2, φ3).

Lemma 1. All solutions of system (1) with initial conditions (2) are positive.

Proof. We prove the positivity by contradiction. Suppose T (t) is not always positive. Then, let t0 > 0 be
the first time such that T (t0) = 0. From the first equation of (1) we have Ṫ (t0) = s > 0. By our assumption
this means T (t) < 0, for t ∈ (t0 − ǫ, t0), where ǫ is an arbitrary small positive constant. Implying that exist
t′0 < t0 such that T (t′0) = 0 this is a contradiction because we take t0 as the first value which T (t0) = 0. It
follows that T (t) is always positive.
We now show that I(t) > 0 for all t > 0. Otherwise, if it is not valid, nothing that I(0) > 0 and I(t) > 0,
(−τ ≤ t ≤ 0), then there exist a t1 such that I(t1) = 0. Assume that t1 is the first time such that I(t) = 0,
that is, t1 = inf{t > 0 : I(t) = 0}.
Then t1 > 0, and from system (1) with (2), we get

İ(t1) =

{
ϕ1(t1 − τ)ϕ3(t1 − τ) > 0, if 0 ≤ t1 ≤ τ,
T (t1 − τ)V (t1 − τ) > 0, if t1 > τ.

Thus, İ(t1) > 0. Thus, for sufficiently small ǫ > 0, İ(t1 − ǫ) > 0. But by the definition of t1, İ(t1 − ǫ) ≤ 0.
Again this is a contradiction. Therefore, I(t) > 0 for all t.
In the same way, we see that V (t) is always positive. Thus, we can conclude that all solutions of system (1)
and (2) remain positive for all t > 0.

3 Stability Analysis

3.1 Equilibrium

To obtain the equilibrium points we look for constant solutions for system (1), and we obtain E1(T0, 0, 0)
and E2(T2, I2, V2), where

T0 =
Tmax

2a

(
a− d+

√
(a− d)2 +

4as

Tmax

)
, (3)

The equilibrium point (T2, I2, V2) satisfies

0 =s− dT2 + aT2

(
1− T2 + I2

Tmax

)
− bT2I2

1 + αV2

0 =
bT2V2
1 + αV2

− µI2 + aI2

(
1− T2 + I2

Tmax

)

0 =pI2 − cV2.

(4)

The third equation leads to V2 =
pI2
c

, which allows us to reduce system (4) to two equations, defining

α̃ =
αp

c
and b̃ =

bp

c
.

We express the first equation of (4) as the following quadratic equation in T2:

a

Tmax
T 2
2 +

(
d− a+

aI2
Tmax

+
bI2

1 + α̃I2

)
T2 − s = 0.
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Note that this quadratic equation has two real roots of opposite sign that depend on I2. We are interested
in the positive one, which is clearly a function of I2.
Defining T2 = f(I2), we express the first two equations of system (4) as

0 =s− df(I2) + af(I2)

(
1− f(I2) + I2

Tmax

)
− b̃f(I2)I2

1 + α̃I2

0 =
b̃f(I2)I2
µ(1 + α̃I2)

− I2 +
a

µ
I2

(
1− f(I2) + I2

Tmax

)
.

(5)

To compute the infection-free equilibrium we assume I2 = V2 = 0, and we obtain

T0 = f(0) =
Tmax

2a

(
(a− d) +

√
(a− d)2 +

4as

Tmax

)
.

Now if we consider the infected equilibrium, then I2 > 0. From the second equation of (5) we can define

F (I2) =
b̃

µ

f(I2)

1 + α̃I2
+
a

µ

(
1− f(I2) + I2

Tmax

)
.

Considering that f(0) = T0, then

F (0) =
b̃

µ
T0 +

a

µ

(
1− T0

Tmax

)
= R0 =

D

µ
,

where D = b̃T0 + a

(
1− T0

Tmax

)
.

We can rewrite the second equation of (5) as F (I2) = 1.
Geometrically, we can interpret that equation as the intersections of the graph of the function F (I2) with the
line F = 1 in the plane determined by F and I2. In order to have a biologically feasible infected equilibrium,
the intersections to be considered are those in the first quadrant of that plane. Now, if the slope of the
tangent line along the graph of the function F (I2) is negative and does not approach zero as I2 increases
beginning at I2 = 0, as well as F (0) > 1, then there is only one of such intersections in the first quadrant,
meaning a unique biologically feasible infected equilibrium. Now.

F ′(I2) =
b̃

µ

f ′(I2)

1 + α̃
− b̃α̃f(I2)

µ(1 + α̃I2)2
− a

µ

f ′(I2)

Tmax
− a

µTmax

=
1

µ

(
b̃

1 + α̃I2
− a

Tmax

)
f ′(I2)−

1

µ

(
b̃α̃f(I2)

(1 + α̃I2)2
+

a

Tmax

)

Note that F ′(I2) depends on f
′(I2). To calculate f ′(I2) we first rewrite the first equation of (5) as

0 =
s

f(I2)
− d+ a

(
1− f(I2) + I2

Tmax

)
− bI2

1 + α̃I2
.

Using implicit differentiation we get

f ′(I2) = −
(

a

Tmax
+

b̃

(1 + α̃I2)2

)(
a

Tmax
+

s

f2(I2)

)−1

< 0
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then

F ′(I2) =
1

µ



(

a

Tmax

)2

−
(

b̃

1 + α̃I2

)2


(

a

Tmax
+

s

f2(I2)

)−1

− 1

µ

(
b̃α̃f(I2)

(1 + α̃I2)2
+

a

Tmax

)

<
1

µ

(
a

Tmax

)2( a

Tmax
+

s

f2(I2)

)−1

− 1

µ

(
b̃α̃f(I2)

(1 + α̃I2)2
+

a

Tmax

)

<
1

µ

(
a

Tmax

)2( a

Tmax

)−1

− 1

µ

(
b̃α̃f(I2)

(1 + α̃I2)2
+

a

Tmax

)

= − 1

µ

b̃α̃f(I2)

(1 + α̃I2)2
< 0.

Note that the minimum value that the denominator

(
a

Tmax
+

s

f2(I2)

)
can take is

(
a

Tmax
+

s

f2(0)

)
=

(
a

Tmax
+

s

T 2
0

)
>

a

Tmax
.

Hence F ′(I2) is negative and does not approach zero as I2 increases. If, in addition R0 > 1, then F (0) > 1
and the slope of the tangent line along the graph of the function F (I2) is negative and does not approach
zero as I2 increases beginning at I2 = 0. It follows that the infected equilibrium exists and it is unique if
R0 > 1. Where

R0 =
1

µ

[
bpT0
c

+ a

(
1− T0

Tmax

)]
(6)

as in [6]

3.2 Local Analysis

In this section we study the local stability of the infection-free equilibrium E1 and the infected equilibrium
E2.
The characteristic equation of system (1) at the infection-free equilibrium is of the form

(
λ+ d− a+

2aT0
Tmax

)(
λ2 +

(
c+ µ− a+

aT0
Tmax

)
λ+ c(µ − a) +

acT0
Tmax

− bpT0e
−λτ

)
(7)

we also consider that E1 satisfies system (1), so a

(
1− T0

Tmax

)
= d − s

T0
. And using the previous fact we

can rewrite the factors of the characteristic equation (7) as

λ = a− d− 2aT0
Tmax

= −
(
s

T0
+

aT0
Tmax

)

which have a negative eigenvalue, and the others eigenvalues are given by

λ2 + a1λ+ a0 + b0e
−λτ = 0 (8)

where
a1 =c+ µ− d+

s

T0
,

a0 =c(µ− d) +
cs

T0
,

b0 =− bpT0

6



Let
f(λ) = λ2 + a1λ+ a0 + b0e

−λτ

note that

a0 + b0 =− 1

c

[
bpT0
c

+ d− s

T0
− µ

]
= −1

c

[
bpT0
c

+ a

(
1− T0

Tmax

)
− µ

]

=− µ

c
(R0 − 1)

if R0 > 1, and we consider λ real we have that

f(0) = a0 + b0 < 0 and lim
λ→∞

f(λ) = ∞.

Hence exist a positive root λ∗ of f(λ), therefore the characteristic equation (7) has a positive root and the
infection-free equilibrium is unstable.
When τ = 0 the equation (8) becomes

λ2 + a1λ+ a0 + b0 = 0,

with a1 > 0 and, if R0 < 1, we have a0 + b0 > 0. Hence, the equilibrium E1 is locally asymptotically stable
when τ = 0.
If λ = iω (ω > 0) is a solution of (8) then separating in real and imaginary parts we obtain the system

a0 − ω2 = −b0 cos(ωτ),
a1ω = b0 sin(ωτ),

squaring and adding the last two equations and after simplifications we get

ω4 + (a21 − 2a0)ω
2 + a20 − b20 = 0, (9)

if R0 < 1 the equation (9) has no positive roots. Noting that the equilibrium E1 is locally asymptotically
stable when τ = 0, by the theory on characteristic equations of delay differential equations from Kuang [12],
we see that if R0 < 1, E1 is locally asymptotically stable.
The characteristic equation of system (1) on the infected equilibrium E2 is given by the following determinant

det



a− d− a

Tmax
[2T2 + I2]− bV2

1+αV2
− λ − a

Tmax
T2 − bT2

(1+αV2)2
bV2

1+αV2
e−λτ − a

Tmax
I2 a− µ− a

Tmax
[T2 + 2I2]− λ bT2

(1+αV2)2
e−λτ

0 p −c− λ




that can be rewritten as

det




−
(
ρ+ a

Tmax
T2 +

bV2

1+αV2

)
− λ − a

Tmax
T2 − bT2

(1+αV2)2

bV2

1+αV2
e−λτ − a

Tmax
I2 −

(
bT2V2

(1+αV2)I2
+ a

Tmax
I2

)
− λ bT2

(1+αV2)2
e−λτ

0 p −pI2
V2

− λ




and the characteristic equations is of the form

λ3 + a2λ
2 + a1λ+ a0 + (b1λ+ b0) e

−λτ = 0 (10)
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where

a2 =ρ+
aT2
Tmax

+
bV2

1 + αV2
+

bT2V2
(1 + αV2)I2

+
aI2
Tmax

+
pI2
V2

> 0

a1 =

(
ρ+

aT2
Tmax

+
bV2

1 + αV2

)(
bT2V2

(1 + αV2)
+

aI2
Tmax

)
+
pI2
V2

(
ρ+

aT2
Tmax

+
bV2

1 + αV2

)

+
pI2
V2

(
bT2V2

(1 + αV2)I2
+

aI2
Tmax

)
− aT2
Tmax

aI2
Tmax

> 0

a0 =

(
ρ+

aT2
Tmax

+
bV2

1 + αV2

)(
bT2V2

(1 + αV2)I2

)
pI2
V2

− pbT2
(1 + αV2)2

aI2
Tmax

− aT2
Tmax

pI2
V2

aI2
Tmax

b1 =
aT2
Tmax

bV2
1 + αV2

− pbT2
(1 + αV2)2

b0 =
aT2
Tmax

pI2
V2

bV2
1 + αV2

+
pbT2

(1 + αV2)2
bV2

1 + αV2
− pbT2

(1 + αV2)

(
ρ+

aT2
Tmax

+
bV2

1 + αV2

)

with T2, I2, V2 defined in (3).
When τ = 0 equation (10) becomes

λ3 + a2λ
2 + (a1 + b1)λ+ (a0 + b0) = 0

by the Routh–Hurwitz criterion the conditions for Reλ < 0 are a2 > 0, a0+b0 > 0, a2(a1+b1)−(a0+b0) > 0,
in our case a2 > 0 and

a0 + b0 =
pbT2

1 + αV2

(
ρ+

aT2
Tmax

+
bV2

1 + αV2

)(
1− 1

1 + αV2

)
+

aI2
Tmax

pI2
V2

(
ρ+

aT2
Tmax

+
bV2

1 + αV2

)

+
pbT2

(1 + αV2)2

(
bV2

1 + αV2
− aI2
Tmax

)
+

aT2
Tmax

pI2
V2

(
bV2

1 + αV2
− aI2
Tmax

)

so we need

(H1) a0 + b0 > 0, a2(a1 + b1)− (a0 + b0) > 0

If τ = 0, by the Routh–Hurwitz criterion, we have the following theorem

Theorem 1. If (H1) is satisfied, then the infected equilibrium E2(T2, I2, V2) is locally asymptotically stable.

Now we analyze if it is possible to have a complex root with positive real part for the case τ > 0, assuming
(H1) satisfies, note that λ = 0 is not a root of (10) because a0 + b0 > 0. Now suppose that λ = iω, with
ω > 0, is a root of (10) so the next equation must be satisfied by ω

−ω3i− a2ω
2 + a1ωi+ a0 + (b1ωi+ b0)(cos(ωτ) + sin(ωτ)i) = 0.

Separating again the real and imaginary parts, we have the following system

a22ω
2 + a0 = −b0 cos(ωτ)− b1ω sin(ωτ),

−ω3 + a1ω = −b1 cos(ωτ) + b0 sin(ωτ).
(11)

Now, we square both sides of each equation above and add the resulting equations, to obtain the following
sixth degree equation for ω

ω6 + (a2 − 2a1)ω
4 + (a21 − 2a2a0 − b21)ω

2 + a20 − b20 = 0. (12)

Let
z = ω2, A = a2 − 2a1, B = a21 − 2a2a0 − b21, C = a20 − b20

8



then equation (12) becomes the third order equation in z

z3 +Az2 +Bz +C = 0. (13)

Suppose that (13) at least a positive root, let z0 the small value for this roots. Then equation (12) has the
root ω0 =

√
z0 then form (11) obtain the value of τ associated with this ω0 such that λ = ωi is an purely

imaginary root of (10)

τ0 =
1

ω0
arccos

[
b0(a2ω

2
0 − a0) + b1ω0(ω

3
0 − a1ω0)

b20 + b21ω
2
0

]

Then we have the following result, from lemma 2.1 from Ruan [20]

Theorem 2. Suppose (H1) hold.

(a) If C ≥ 0 and ∆ = A2 − 3B < 0, then all roots of equation (10) have negative real parts for all τ ≥ 0,
then the infected equilibrium E2 is locally asymptotically stable.

(b) If C < 0 or C ≥ 0, z1 > 0 and z31 + Az21 + Bz1 + C ≤ 0, the all roots of equation (10) have negative
real parts when τ ∈ [0, τ0), then the infected equilibrium E2 is locally asymptotically stable in [0, τ0).

3.3 Global Analysis

In this section we study the global stability of the equilibria, the method to prove is to construct a Lyapunov
functional

Theorem 3. The infection-free equilibrium E1(T0, 0, 0), with T0 defined in (3), of system (1) is globally
asymptotically stable if R0 ≤ 1.

Proof. Define the Lyapunov functional

U(t) =

∫ T

T0

σ − T0
σ

dσ + I +
bT0
c
V + b

∫ τ

0

T (t− ω)V (t− ω)

1 + αV (t− ω)
dω

U is defined and is continuous for any positive solution (T (t), I(t), V (t)) of system (1) and U = 0 at
E1(T0, 0, 0). And calculating the derivative of U(t) along positive solutions of (1), it follows that

dU

dt
=
T − T0
T

Ṫ (t) + İ(t) +
bT0
c
V̇ − b

∫ τ

0

d

dω

T (t− ω)V (t− ω)

1 + αV (t− ω)
dω

=
T − T0
T

(
s− dT + aT

(
1− T + I

Tmax

)
− bTV

1 + αV

)
+
bT (t− τ)V (t− τ)

1 + αV (t− τ)
− µI

+ aI

(
1− I + T

Tmax

)
+
bT0
c

(pI − cV )− bT (t− τ)V (t− τ)

1 + αV (t− τ)
+

bTV

1 + αV

=(T − T0)

(
s

T
− d+ a

(
1− T + I

Tmax

)
− bV

1 + αV

)
− µI + aI

(
1− I + T

Tmax

)

+
bT0
c

(pI − cV ) +
bTV

1 + αV

9



using a− d =
aT0
Tmax

− s

T0
and simplifying, we get

dU

dt
=(T − T0)

(
−s
(
T − T0
TT0

)
− a

Tmax
(T − T0)−

aI

Tmax
− bV

1 + αV

)
− µI + aI

(
1− I + T

Tmax

)

+
bT0
c

(pI − cV ) +
bTV

1 + αV

=− s
(T − T0)

2

TT0
− a

Tmax
(T − T0)

2 − a

Tmax
I(T − T0)−

b(T − T0)V

1 + αV
− µI + aI − a

Tmax
IT

− a

Tmax
I2 +

bpT0
c
I − bT0V +

bTV

1 + αV

≤− s
(T − T0)

2

TT0
− a

Tmax
(T − T0)

2 − a

Tmax
I(T − T0)−

b(T − T0)V

1 + αV
− µI + aI − a

Tmax
IT

− a

Tmax
I2 +

bpT0
c
I − bT0V

1 + αV
+

bTV

1 + αV
+

a

Tmax
IT0 −

a

Tmax
IT0

=− s
(T − T0)

2

TT0
− a

Tmax
(T − T0)

2 − 2a

Tmax
I(T − T0)− µI + aI − a

Tmax
I2 +

bpT0
c
I

− a

Tmax
IT0

=− s
(T − T0)

2

TT0
− a

Tmax
[(T − T0) + I]2 + I

(
a

(
1− T0

Tmax

)
+
bTop

c
− µ

)

note that

a

(
1− T0

Tmax

)
+
bTop

c
− µ = µ(R0 − 1) ≤ 0,

since R0 ≤ 1, therefore

L̇(t) ≤ −
(
s
(T − T0)

2

TT0
+

a

Tmax
[(T − T0)

2 + I] + µ(1−R0)I

)
< 0

If R0 ≤ 1 then
dU

dt
≤ 0 from corollary 5.2 in [12], E1 is globally asymptotically stable. Also, for R0 = 1,

dU

dt
(t) = 0 if and only if T (t) = T0 and I(t) = 0 while in the case R0 < 1,

dU

dt
(t) = 0 if and only if

T (t) = T0 and I(t) = 0. Therefore, the largest invariant set in

{
(T (t), I(t), V (t)) :

dU

dt
= 0

}
when R0 ≤ 1

is E1(T0, 0, 0). By the classical Lyapunov-LaSalle invariance principle (theorem 5.3 in [12]), E1 is globally
asymptotically stable.

In the following, we consider the global asymptotic stability of a unique infected equilibrium E2. We
construct an Lyapunov functional for infected equilibrium, using suitable combinations of the Lyapunov
functions given in [11] and the Volterra–type functionals [15, 25].

Theorem 4. If R0 > 1 and a ≤ d+ a
Tmax

[T2 + I2], then the unique infected equilibrium E2 of (1) is globally
asymptotically stable for any τ ≥ 0.

Proof. Define a Lyapunov functional for E2,

L(t) = L̃(t) +
bT2V2
1 + αV2

L+(t),

10



where

L̃ =

∫ T

T2

(σ − T2)

σ
dσ +

∫ I

I2

(σ − I2)

σ
dσ +

bT2V2
pI2(1 + αV2)

∫ V

V2

(
1− V2(1 + ασ)

σ(1 + αV2)

)
dσ,

and

L+ =

∫ τ

0

(
T (t− ω)V (t− ω)(1 + αV2)

T2V2(1 + αV (t− ω))
− 1− ln

T (t− ω)V (t− ω)(1 + αV2)

T2V2(1 + αV (t− ω))

)
dω.

At infected equilibrium, we have

a− d = − s

T2
+

bV2
1 + αV2

+
a

Tmax
(T2 + I2), (14)

a− µ = − bT2V2
I2(1 + αV2)

+
a

Tmax
(T2 + I2), (15)

c = p
I2
V2
. (16)

The derivative of L̃ with respect to t along the solutions of (1), we get

dL̃

dt
=

(T − T2)

T
Ṫ +

(I − I2)

I
İ +

bT2V2
pI2(1 + αV2)

(
1− V2(1 + αV )

V (1 + αV2)

)
V̇ ,

= (T − T2)

(
s

T
− a

Tmax
(T + I)− bV

1 + αV
+ a− d

)

+ (I − I2)

(
bT (t− τ)V (t− τ)

I(1 + αV (t− τ))
− a

Tmax
(T + I) + a− µ

)

+
bT2V2

pI2(1 + αV2)

(
1− V2(1 + αV )

V (1 + αV2)

)
(pI − cV ).

Using (14)–(15) and (16), we get

dL̃

dt
= (T − T2)

(
−s(T − T2)

TT2
− a

Tmax
[(T − T2) + (I − I2)]− b

(
V

1 + αV
− V2

1 + αV2

))

+ (I − I2)

(
b

(
T (t− τ)V (t− τ)

I(1 + αV (t− τ))
− T2V2
I2(1 + αV2)

)
− a

Tmax
[(T − T2) + (I − I2)]

)

+
bT2V2

pI2(1 + αV2)

(
1− V2(1 + αV )

V (1 + αV2)

)(
pI − pI2

V

V2

)
.

Cancelling identical terms with opposite signs and collecting terms, yields

dL̃

dt
= −s(T − T2)

2

TT2
− a

Tmax
[(T − T2) + (I − I2)]

2

+
bT2V2
1 + αV2

(
− TV (1 + αV2)

T2V2(1 + αV )
+
T (t− τ)V (t− τ)(1 + αV2)

T2V2(1 + αV (t− τ))

)

+
bT2V2
1 + αV2

(
− IV2(1 + αV )

I2V (1 + αV2)
− T (t− τ)I2V (t− τ)(1 + αV2)

T2IV2(1 + αV (t− τ))

)

+
bT2V2
1 + αV2

(
T

T2
+
V (1 + αV2)

V2(1 + αV )
− V

V2
+

(1 + αV )

(1 + αV2)

)
.

11



We can rewrite
dL̃

dt
as

dL̃

dt
= −s(T − T2)

2

TT2
− a

Tmax
[(T − T2) + (I − I2)]

2

+
bT2V2
1 + αV2

(
− TV (1 + αV2)

T2V2(1 + αV )
+
T (t− τ)V (t− τ)(1 + αV2)

T2V2(1 + αV (t− τ))

)

+
bT2V2
1 + αV2

(
3− T2

T
− IV2(1 + αV )

I2V (1 + αV2)
− T (t− τ)I2V (t− τ)(1 + αV2)

T2IV2(1 + αV (t− τ))

)

+
bT2V2
1 + αV2

(
V (1 + αV2)

V2(1 + αV )
− V

V2
+

(1 + αV )

(1 + αV2)
− 1

)
+

bT2V2
1 + αV2

(
T2
T

+
T

T2
− 2

)
,

replacing the term
T

T2
+
T2
T

− 2 by
(T − T2)

2

T2
,

dL̃

dt
= −

(
s− bT2V2

1 + αV2

)
(T − T2)

2

TT2
− a

Tmax
[(T − T2) + (I − I2)]

2

+
bT2V2
1 + αV2

(
− TV (1 + αV2)

T2V2(1 + αV )
+
T (t− τ)V (t− τ)(1 + αV2)

T2V2(1 + αV (t− τ))

)

+
bT2V2
1 + αV2

(
3− T2

T
− IV2(1 + αV )

I2V (1 + αV2)
− T (t− τ)I2V (t− τ)(1 + αV2)

T2IV2(1 + αV (t− τ))

)

+
bT2V2
1 + αV2

(
1− V2(1 + αV )

V (1 + αV2)

)(
V (1 + αV2)

V2(1 + αV )
− V

V2

)
.

Using s− bT2V2
1 + αV2

= (d− a)T2 +
aT2

Tmax
[T2 + I2], we get

dL̃

dt
= −

(
d− a+

a

Tmax
[T2 + I2]

)
(T − T2)

2

T
− a

Tmax
[(T − T2) + (I − I2)]

2

+
bT2V2
1 + αV2

(
− TV (1 + αV2)

T2V2(1 + αV )
+
T (t− τ)V (t− τ)(1 + αV2)

T2V2(1 + αV (t− τ))

)

+
bT2V2
1 + αV2

(
3− T2

T
− IV2(1 + αV )

I2V (1 + αV2)
− T (t− τ)I2V (t− τ)(1 + αV2)

T2IV2(1 + αV (t− τ))

)

− αbT2
(V − V2)

2

(1 + αV )(1 + αV2)2
.
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It is easy to see that

dL+

dt
=

d

dt

∫ τ

0

(
T (t− ω)V (t− ω)(1 + αV2)

T2V2(1 + αV (t− ω))
− 1− ln

T (t− ω)V (t− ω)(1 + αV2)

T2V2(1 + αV (t− ω))

)
dω,

=

∫ τ

0

d

dt

(
T (t− ω)V (t− ω)(1 + αV2)

T2V2(1 + αV (t− ω))
− 1− ln

T (t− ω)V (t− ω)(1 + αV2)

T2V2(1 + αV (t− ω))

)
dω,

= −
∫ τ

0

d

dω

(
T (t− ω)V (t− ω)(1 + αV2)

T2V2(1 + αV (t− ω))
− 1− ln

T (t− ω)V (t− ω)(1 + αV2)

T2V2(1 + αV (t− ω))

)
dω,

= −
[
T (t− ω)V (t− ω)(1 + αV2)

T2V2(1 + αV (t− ω))
− 1− ln

T (t− ω)V (t− ω)(1 + αV2)

T2V2(1 + αV (t− ω))

]τ

ω=0

,

= −T (t− τ)V (t− τ)(1 + αV2)

T2V2(1 + αV (t− τ))
+
TV (1 + αV2)

T2V2(1 + αV )
+ ln

T (t− τ)V (t− τ)(1 + αV2)

T2V2(1 + αV (t− τ))

+ ln
T2V2(1 + αV )

TV (1 + αV2)
,

= −T (t− τ)V (t− τ)(1 + αV2)

T2V2(1 + αV (t− τ))
+
TV (1 + αV2)

T2V2(1 + αV )
+ ln

T (t− τ)I2V (t− τ)(1 + αV2)

T2IV2(1 + αV (t− τ))

+ ln
T2
T

+ ln
IV2(1 + αV )

I2V (1 + αV2)
.

Since

dL

dt
=
dL̃

dt
+

bT2V2
1 + αV2

dL+

dt
,

we obtain

dL

dt
= −

(
d− a+

a

Tmax
[T2 + I2]

)
(T − T2)

2

T
− a

Tmax
[(T − T2) + (I − I2)]

2

− bT2V2
1 + αV2

(
T2
T

− 1− ln
T2
T

)
− bT2V2

1 + αV2

(
IV2(1 + αV )

I2V (1 + αV2)
− 1− ln

IV2(1 + αV )

I2V (1 + αV2)

)

− bT2V2
1 + αV2

(
T (t− τ)I2V (t− τ)(1 + αV2)

T2IV2(1 + αV (t− τ))
− 1− ln

T (t− τ)I2V (t− τ)(1 + αV2)

T2IV2(1 + αV (t− τ))

)

− αbT2
(V − V2)

2

(1 + αV )(1 + αV2)2
.

Thus, a ≤ d +
a

Tmax
[T2 + I2] implies that dL/dt ≤ 0. By Corollary 5.2 in [12], solutions limit to M, the

largest invariant subset of {dL/dt = 0}. Furthermore, dL/dt = 0 if and only if T (t) = T (t − τ) = T2,
V (t) = V (t − τ) = V2 and I(t) = I2. Therefore the largest compact invariant set in M is the singleton
{E2}, where E2 is the infected equilibrium. This shows that limt→∞(T (t), I(t), V (t)) = (T2, I2, V2). By the

classical Lyapunov-LaSalle invariance principle (Theorem 5.3 in [12]), if a ≤ d +
a

Tmax
[T2 + I2] then E2 is

globally asymptotically stable. This proves Theorem 4.

As is well known, the Lyapunov functions are never unique. We constructed a Volterra–type Lyapunov
functional for the infected equilibrium to prove Theorem 4

L(t) = L̂(t) +
bT2V2
1 + αV2

L+(t),

13



where

L̂ =

∫ T

T2

(σ − T2)

σ
dσ +

∫ I

I2

(σ − I2)

σ
dσ +

bT2V2
pI2(1 + αV2)

∫ V

V2

(
1− V2

σ

)
dσ.

The time derivative of L(t) computed along solutions of (1), is given by the expression

dL

dt
= −

(
d− a+

a

Tmax
[T2 + I2]

)
(T − T2)

2

T
− a

Tmax
[(T − T2) + (I − I2)]

2

− bT2V2
1 + αV2

(
T2
T

− 1− ln
T2
T

)
− bT2V2

1 + αV2

(
IV2
I2V

− 1− ln
IV2
I2V

)

− bT2V2
1 + αV2

(
T (t− τ)I2V (t− τ)(1 + αV2)

T2IV2(1 + αV (t− τ))
− 1− ln

T (t− τ)I2V (t− τ)(1 + αV2)

T2IV2(1 + αV (t− τ))

)

− bT2V2
1 + αV2

(
1 + αV

1 + αV2
− 1− ln

1 + αV

1 + αV2

)
− αbT2

(V − V2)
2

(1 + αV )(1 + αV2)2
.

4 Hopf Bifurcation Analysis

For the bifurcation analysis we use the delay τ as a bifurcation parameter to find an interval in which the
infected equilibria is stable and unstable out of the same margins. Now to establish the Hopf bifurcation at

τ = τ0 we need to show that
dReλ(τ0)

dτ
> 0 differentiating (10) with respect to τ we get

dλ

dτ
=

λ(b1λ+ b0)e
−λτ

3λ2 + 2a2λ+ a1 + b1e−λτ − (b1λ+ b0)e−λτ

this gives (
dλ

dτ

)−1

=
3λ2 + 2a2λ+ a1 + b1e

−λτ − (b1λ+ b0)e
−λτ

λ(b1λ+ b0)e−λτ

=
3λ2 + 2a2λ+ a1 + b1e

−λτ

λ(b1λ+ b0)e−λτ
− τ

λ

=
3λ3 + 2a2λ

2 + a1λ+ b1λe
−λτ

λ2(b1λ+ b0)e−λτ
− τ

λ
(
dλ

dτ

)−1

=
2λ3 + a2λ

2 − a0 − b0e
−λτ

λ2(b1λ+ b0)e−λτ
− τ

λ

=− 2λ3 + a2λ
2 − a0

λ2(λ3 + a2λ2 + a1λ+ a0)
− b0
λ2(b1λ+ b0)

− τ

λ

14



It is important to be aware that we used (10) in several equalities. Thus,

sign

{
dReλ

dτ

}

λ=iω0

=sign

{
Re

(
dλ

dτ

)}

λ=iω0

=sign

{
Re

[
− 2λ3 + a2λ

2 − a0
λ2(λ3 + a2λ2 + a1λ+ a0)

− b0
λ2(b1λ+ b0)

− τ

λ

]

λ=iω0

}

=sign

{
Re

[
− −2ω3

0i− a2ω
2i− a0

−ω2
0(−ω3

0i− a2ω2
0 + a1ω0i+ a0)

− b0
−ω2

0(b1ω0i+ b0)
− τ0
ω0i

]}

=sign

{
2ω6

0 + (a22 − 2a1)ω
4
0 − a20

ω2
0[(a2ω

2
0 − a0)2 + (ω3

0 − a1ω0)2]
+

b20
ω2
0[b

2
0 + (b1ω0)2]

}

=sign

{
2ω6

0 + (a22 − 2a1)ω
4
0 + b20 − a20

ω2
0[(a2ω

2
0 − a0)2 + (ω3

0 − a1ω0)2]

}

=sign

{
2ω6

0 + (a22 − 2a1)ω
4
0 + (ω6 + (a22 − 2a1)ω

4
0 + (a21 − 2a0a2 − b21)ω

2
0)

ω2
0[(a2ω

2
0 − a0)2 + (ω3

0 − a1ω0)2]

}

=sign

{
3ω4

0 + 2(a22 − 2a1)ω
2
0 + a21 − 2a0a2 − b21

(a2ω2
0 − a0)2 + (ω3

0 − a1ω0)2

}
.

It is also important to notice that we used (10)-(12) in several equalities. Now to conclude that
dReλ

dτ
> 0

consider the next lemma

Lemma 2 ([28]). Supposed that x1, x2, x3 are the roots of equation g(x) = x3 +αx2 + βx+ γ = 0 (β < 0),
and x3 is the largest positive simple root, then

dg(x)

dx

∣∣∣∣
x=x3

> 0.

In our case, considering F (z) = z3 +Az2 +Bz+C = 0, defined in (13), and assuming B < 0 and ω2
0 as the

largest positive root we have

dReλ

dτ
=

dF (z)
dz

(a2ω2
0 − a0)2 + (ω3

0 − a1ω0)2
> 0.

The above analysis can be summarized into the following theorem:

Theorem 5. Suppose that

(i) R0 > 1.

If either

(ii) C < 0

or

(iii) C ≥ 0 and B < 0

is satisfied, and ω0 is the largest positive simple root of (13) then the infected equilibrium E2 of model (1)
is locally asymptotically stable when τ < τ0 and unstable when τ > τ0 where

τ0 =
1

ω0
arccos

[
b0(a2ω

2
0 − a0) + b1ω0(ω

3
0 − a1ω0)

b20 + b21ω
2
0

]

when τ = τ0, a Hopf bifurcation occurs; that is a family of periodic solutions bifurcates from E2 as τ passes
through the critical value τ0.
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5 Permanence

Lemma 3. For any solution (T (t), I(t), V (t)) of system (1), we have

lim sup
t→∞

T (t) ≤ T0 =
Tmax

2a

[
a− d+

√
(a− d)2 +

4as

Tmax

]
.

Then there is a t1 > 0 such that for any sufficiently small ǫ > 0, we have T (t) ≤ T0 + ǫ for t > t1.

The previous lemma follows, noting that for the first equation of (1), we have

Ṫ (t) ≤ s− (d− a)T (t)− a

Tmax
T 2(t)

Theorem 6. There exist MI , MV > 0 such that for any positive solution (T (t), I(t), V (t)) of system (1),

I(t) < MI , V (t) < MV

for all large t.

Proof. Let W (t) = T (t− τ) + I(t), then

Ẇ (t) =Ṫ (t− τ) + İ(t)

=s− dT (t− τ) + aT (t− τ)

(
1− T (t− τ) + I(t− τ)

Tmax

)
− bT (t− τ)V (t− τ)

1 + αV (t− τ)
+

bT (t− τ)V (t− τ)

1 + αV (t− τ)
− µI + aI

(
1− T + I

Tmax

)

=s− dT (t− τ) + aT (t− τ)

(
1− T (t− τ) + I(t− τ)

Tmax

)
− µI + aI

(
1− T + I

Tmax

)

=s− dT (t− τ) + aT (t− τ)− aT 2 (t− τ)

Tmax
− aT (t− τ) I (t− τ)

Tmax
− µI + aI − aTI

Tmax

− aI2

Tmax
.

Using that, − a
Tmax

(
T (t− τ)− Tmax

2

)2
+ aTmax

4 = −aT 2(t−τ)
Tmax

+ aT (t− τ) and − a
Tmax

(
I − Tmax

2

)2
+ aTmax

4 =

− aI2

Tmax
+ aI, we get

Ẇ (t) = s− dT (t− τ)− a

Tmax

(
T (t− τ)− Tmax

2

)2

− a

Tmax

(
I − Tmax

2

)2

+
aTmax

2
+

− aT (t− τ) I (t− τ)

Tmax
− µI − aTI

Tmax
,

then

Ẇ (t) = −dT (t− τ)− µI − a

Tmax

(
T (t− τ)− Tmax

2

)2

− a

Tmax

(
I − Tmax

2

)2

+
aTmax + 2s

2
+

− aT (t− τ) I (t− τ)

Tmax
− aTI

Tmax

≤ −dT (t− τ)− µI(t) +
aTmax + 2s

2
,
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therefore

Ẇ (t) ≤ −dW (t) +
aTmax + 2s

2

where d ≤ µ. Hence, we get the boundness of W (t)

lim sup
t→∞

W (t) =
aTmax/2 + s

h
,

that is, there exist t2 > 0 and M1 > 0 such that W (t) < M1 for t > t2. Then I(t) has an ultimately upper
bound MI .
It follows from the third equation of system (1) that V (t) has an ultimately upper bound, say MV . Then
the assertion of theorem follows and the proof is complete.

Define
Ω = {(T, I, V ) : 0 ≤ T ≤ T0, 0 ≤ I ≤MI , 0 ≤ V ≤MV }

System (1) satisfies, for some t1 > 0,

Ṫ ≥ s− dT + aT

(
1− T +MI

Tmax

)
− bT

α

which implies that

lim inf
t→∞

T (t) ≥ Tmax

2a


a− d− b

α
− aMI

Tmax
+

√(
a− d− b

α
− aMI

Tmax

)2

+
4as

Tmax




Now we shall prove that the instability of E1 implies that system (1) is permanent.

Definition 1. System (1) is said to be uniformly persistent, if there is an η > 0 (independent of the initial
data) such that every solution (T (t), I(t), V (t)) with initial condition of system (1) satisfies lim inft→∞ T (t) ≥
η, lim inft→∞ I(t) ≥ η, lim inft→∞ V (t) ≥ η.

For dissipative system uniform persistence is equivalent to the permanence.

Theorem 7. System (1) is permanent provided R0 > 1.

We present the persistence theory for infinite dimensional system from Hale [7]. Let X be a complete space
metric. Suppose that X0 ⊂ X, X0 ⊂ X, X0 ∩X0 = ∅, X = X0 ∪X0. Assume that Y (t) is C0-semigroup
on X satisfying {

Y (t) : X0 → X0,
Y (t) : X0 → X0.

(17)

Let Yb(t) = Y (t)|X0
and let Ab be the global attractor for Yb(t).

Lemma 4. Suppose that Y (t) satisfies (17) and we have the following:

1. there is a t0 ≥ 0 such that Y (t) is compact for t > t0,

2. Y (t) is a point dissipative in X,

3. Āb = ∪x∈Ab
ω(x) is isolated and has an acyclic covering M , where M = {M1,M2, . . . ,Mn},

4. W s(Mi) ∩X0 = ∅, for i = 1, 2, . . . , n.
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Then X0 is a uniform repellor with respect to X0, i.e., there is an ǫ > 0 such that for any x ∈ X0

lim inf
t→∞

d(Y (t)x,X0) ≥ ǫ

, where d is the distance of Y (t)x from X0.

We now prove theorem 7.

Proof of Theorem 7. We begin by showing that the boundary planes of R3
+ repel the positive solutions of

system (1) uniformly. Let us define

C0 = {(ψ, φ1, φ2) ∈ C([−τ, 0],R3
+) : ψ(θ) 6= 0, φ1(θ) = φ2(θ) = 0, (θ ∈ [−τ, 0])}.

If C0 = intC([−τ, 0],R3
+), it suffices to show that there exist an ǫ0 such that any solution ut of system (1)

initiating from C0, lim inft→+∞ d(ut, C0) ≥ ǫ0. To this end, we verify below that the conditions of lemma 4
are satisfied. It is easy to see that C0 and C0 are positively invariant. Moreover, conditions (1) and (2) of
lemma 4 are satisfied. Thus, we only need to verify the conditions (3) and (4). There is a constant solution
E1 in C0, to T (t) = T0, I(t) = V (t) = 0. If (T (t), I(t), V (t)) is a solution of system (1) initiating from C0,
then T (t) → T0, I(t) → 0, V (t) → 0, as t → +∞. It is obvious that E1 is an isolated invariant. Now, we
show that W s(E1)∩C0 = ∅. Assuming the contrary, then there exist a positive solution (T̃ (t), Ĩ(t), Ṽ (t)) of
system (1) such that ((T̃ (t), Ĩ(t), Ṽ (t))) → (T0, 0, 0) as t → ∞. Let us choose ǫ > 0 small enough and t0 > 0
sufficiently large such that

T0 − ǫ < T̃ (t) < T0 + ǫ, 0 < Ĩ(t) < ǫ

for t > t0 − τ . Then we have for t > t0
{ ˙̃I(t) ≥ b(T0 − ǫ)Ṽ (t− τ) +

(
−µ+ a

(
1− T0 + ǫ+ ǫ

Tmax

))
Ĩ(t),

˙̃V (t) = pĨ(t)− cṼ (t)

Let us consider the matrix defined by

Aǫ =


−µ+ a

(
1− T0 + ǫ+ ǫ

Tmax

)
b(T0 − ǫ)

p −c


 .

Since Aǫ admits positive off-diagonal elements, Perron-Frobenius theorem implies that there is a positive

eigenvector V̂ for the maximum eigenvalue λ1 of Aǫ. Moreover, since R0 > 1, then cµ−ac
(
1− T0 + 2ǫ

Tmax

)
−

bp(T0 − ǫ) < 0 for ǫ small enough, by a simple computation we see that λ1 is positive.
Let us consider

{
İ(t) = b(T0 − ǫ)V (t− τ) +

(
−µ+ a

(
1− T0 + ǫ+ ǫ

Tmax

))
I(t)

V̇ (t) = pI(t)− cV (t)
. (18)

Let v = (v1, v2) and l > 0 be small enough such that

lv1 < Ĩ(t0 + θ),

lv2 < Ṽ (t0 + θ),

for θ ∈ [−τ, 0] if (I(t), V (t)) is a solution of system (18) satisfying I(t) = lv1, V (t) = lv2 for t0 − τ ≤ t ≤ t0.
Since the semiflow of system (18) is monotone and Aǫv > 0, it follows that I(t) and V (t) are strictly
increasing and I(t) → ∞, V (t) → ∞ as t → ∞. Note that Ĩ ≥ I(t), Ṽ (t) ≥ V (t) for t > t0. We have
Ĩ(t) → ∞, Ṽ (t) → ∞ as t → ∞. At this time, we are able to conclude form theorem 6 that C0 repels the
positive solutions of system (1) uniformly. Incorporating this into lemma 4 and theorem 6, we know that
the system (1) is permanent.
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6 Estimation of the length of delay to preserve stability

Let T (t) = T2 +X(t), I(t) = I2 + Y (t), V (t) = V2 + Z(t).
We consider the linearized system (1) about the equilibrium E2 and get

dX

dt
=

(
a− d− 2aT2

Tmax
− aI2
Tmax

− bV2
Tmax

)
X − aT2

Tmax
Y − bT2

(1 + αV2)2
Z

dY

dt
=− aI2

Tmax
X +

(
a− µ− aT2

Tmax
− 2aI2
Tmax

)
Y +

bV2
1 + αV2

Xτ +
bT2

(1 + αV2)2
Zτ

dZ

dt
=pY − cZ

(19)

Taking Laplace transform of the system given by (19), we get

sL[X]−X(0) =

(
a− d− 2aT2

Tmax
− aI2
Tmax

− bV2
1 + αV2

)
L[X]− aT2

Tmax
L[Y ]

− bT2
(1 + αV2)2

L[Z]

sL[Y ]− Y (0) =− aI2
Tmax

L[X]−
(
a− µ− aT2

Tmax
− 2aI2
Tmax

)
L[Y ] +

bV2
1 + αV2

L[Xτ ]

+
bT2

(1 + αV2)2
L[Zτ ]

sL[Z]− Z(0) =pL[Y ]− cL[Z]

(20)

The expressions L[Zτ ] and L[Xτ ] are equivalent to

L [Xτ ] =

∫ ∞

0
e−stX (t− τ) dt =

∫ τ

0
e−stX (t− τ) dt+

∫ ∞

τ

e−stX (t− τ) dt

taking t = t1 + τ we can express the last equation as

L[Xτ ] =

∫ 0

−τ

e−s(t1+τ)X (t1) dt1 +

∫ ∞

0
e−s(t1+τ)X (t1) dt1

= e−sτ

∫ 0

−τ

e−st1X (t1) dt1 + e−sτ

∫ ∞

0
e−st1X (t1) dt1

= e−sτK1 + e−sτL[X].

In the same way

L[Zτ ] =

∫ ∞

0
e−stZ (t− τ) dt =

∫ τ

0
e−stZ (t− τ) dt+

∫ ∞

τ

e−stZ (t− τ) dt.

We have

L [Zτ ] =

∫ 0

−τ

e−s(t1+τ)Z (t1) dt1 +

∫ ∞

0
e−s(t1+τ)Z (t1) dt1

= e−sτ

∫ 0

−τ

e−st1Z (t1) dt1 + e−sτ

∫ ∞

0
e−st1Z (t1) dt1

= e−sτK2 + e−sτL[Z].
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Replacing L[Xτ ] and L[Zτ ] on system (20) we can clear L[X] and L[Z] and we can write

(A− sI)




L[X]
L[Y ]
L[Z]


 = B

where

A =



a− d− 2aT2

Tmax
− aI2

Tmax
− bV2

1+αV2
− aT2

Tmax
− bT2

(1+αV2)2

− aI2
Tmax

+ bV2

1+αV2
e−sτ a− µ− aT2

Tmax
− 2aI2

Tmax

bV2

(1+αV2)2
e−sτ

0 p c




B =




X(0)
Y (0) + (K1 +K2)e

−sτ

Z(0)


 .

The inverse Laplace transformations of L[X], L[Y ] and L[Z] will have terms which exponentially increase
with time if L[X], L[Y ] and L[Z] have poles with positive real parts. For E2 to be locally asymptotically
stable, a necessary and sufficient condition is that all poles of L[X], L[Y ] and L[Z] have negative real parts.
We will employ the Nyquist criteria, which states that if X is the arc length of a curve encircling the right
half plane, the curve L[X] will encircle the origin a number of times equal to the difference between the
numbers of poles and zeroes of L[X] in the right half plane. This criteria is applied to X, Y and Z.Let

F (s) = s3 + a2s
2 + a1s+ a0 + (b1s+ b0)e

−sτ

obtained from the Laplace transform. Note that F (s) = 0 is the characteristic equation of system (1) on the
equilibrium E∗ and the zeroes are the poles of L[X], L[Y ] and L[Z]. The conditions for local asymptotic
stability of E2 are given in [24]

ℜ[F (iv0)] = 0

ℑ[F (iv0)] > 0,
(21)

and v0 is the smallest positive root of the first equation of (21). In our case, (21) gives

− a2v
2
0 + a0 + b1v0 sin(v0τ) + b0 cos(v0τ) = 0 (22)

−v30 + a1v0 + b1v0 cos(v0τ)− b0 sin(v0τ) > 0. (23)

If (22) and (23) are satisfied simultaneously, they are sufficient conditions to guarantee stability. We shall
apply them to get an estimate on the length of delay. Our aim is to find an upper bound v+ on v0,
independent of τ and then to estimate τ so that (23) hold for all values of v, 0 ≤ v ≤ v+ and hence in
particular v = v0. We rewrite (22) as

a2v
2
0 = a0 + b1v0 sin(v0τ) + b0 cos(v0τ). (24)

Maximizing a0 + b1v0 sin(v0τ) + b0 cos(v0τ) subject to

| sin(v0τ)| ≤ 1, | cos(v0τ)| ≤ 1,

we obtain
a2v

2
0 ≤ |a0|+ |b1|v0 + |b0|. (25)

Hence, if

v+ =
|b1|+

√
b21 + 4a2(|a0|+ |b0|)

2a2
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then clearly from (25) we have v0 ≤ v+.
We can rewrite (23) as

v20 < a1 + b1 cos(v0τ)−
a2b0
v0

sin(v0τ). (26)

Replacing (24) in (26) and rearranging we get

(b0 − a1b1)(cos(v0τ)− 1) +

(
b1v0 +

a2b0
v0

)
sin(v0τ) < a2a1 − a0 + a1b1 − b0.

Using the bounds
∣∣∣∣b1v0 +

a2b0
v0

∣∣∣∣ | sin(v0τ)| ≤
∣∣∣∣b1v

+ +
a2b0
v+

∣∣∣∣ (v
+τ) = (|b1|(v+)2 + |a2b0|)τ,

|b0 − a1b1| | cos(v0τ)− 1| ≤ 2 |b0 − a1b1| sin2
(v0τ

2

)
≤ |b0 − a1b1|

2
(v+)2τ2,

we obtain from (26) K1τ
2 +K2τ < K3, where

K1 =
|b2 − a1b1|

2
(v+)2, K2 = |b1|(v+)2 + |a2b2|, K3 = a2a1 + a1b1 − a0 − b2

thus if K1τ2 +K2τ < K3 holds, then the inequality (22) is satisfied. A positive root of K1τ
2 +K2τ = K3

is given by

τ+ =
1

2K1
(−K2 +

√
K2

2 + 4K1K3).

For 0 ≤ τ ≤ τ+, the Nyquist criteria holds. τ+ gives estimate for the length of delay for which stability is
preserved. Here τ+ is dependent of the system parameters. Hence we can conclude that the estimate for
the delay is totally dependent on system parameters for which the equilibrium E2 is locally asymptotically
stable.

Theorem 8. If there exist a parameter 0 ≤ τ ≤ τ+ such that K1τ
2 +K2τ < K3, then τ+ is the maximum

value (length of delay) of τ for which E2 is asymptotically stable.

7 Numerical Simulations

To explore the behaviour of the system (1) and illustrate the stability of equilibria solutions we used, dde23
[21], based on Runge-Kutta methods. We consider the values for the parameters as in [4].
In figure 1 we illustrate the stability of E1 with the following parameters s = 8 × 105, d = 4.7 × 10−3,
µ = 0.35, a = 1, Tmax = 0.7 × 107, b = 0.6 × 10−7, c = 5.9, p = 5.4 α = 0.001, with this values for the
parameters, R0 = 0.9237 so we are under conditions of theorem 1 and 3. We show the dynamic of solutions
for several values of τ and we can appreciate that the solution approximates to equilibrium with oscillations
as the values of τ increases.
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Figure 1: Stability of the E1 equilibrium with several values of τ
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In figure 2 we see the same dynamic for system (1) with a large time and different delay τ , so we can
conclude that delay has no effect on stability of infection-free equilibrium for our model.
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Figure 2: Phase space for different values of τ , which illustrates the stability of infection-free equilibrium E1

For figure 3 we consider the following values for parameters s = 8 × 105, d = 4.7 × 10−3,µ = 0.3, a =
2, Tmax = 0.7 × 107, b = 0.6 × 10−7, c = 5.9, p = 5.4 and α = 0.001, in this case the equilibrium
is (7.363787665 × 106, 1.202557883, 1.100646198) with R0 = 1.0014820, note that this case satisfies the
conditions for global stability of E2, as is establish in theorem 4.
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Figure 3: Stability of the infected equilibrium, E2, with several values of τ

In figure 4, we illustrate the the dynamic for system. (1) with respect to stability of infected equilibrium
for several values of τ .
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Figure 4: Phase space for different values of τ , which illustrates the stability of infection equilibrium E2

In figures 5, 6 and 7, we illustrate the stability of E2 according to theorem 5. In this case s = 0.01, d = 0.02,
a = 0.95, Tmax = 1200 b = 0.0027 α = 0.001 µ = 1, p = 10, c = 2.4 with this values R0 = 13.48 , and we
illustrate for different values of τ . The equilibrium is (19.2, 106.7, 444.5), we can observe periodic solutions
for a large value of τ , also we note that the condition for the global stability of endemic equilibrium is not
satisfied.

22



0 50 100 150 200 250
0

20

40

60

80

100

120

140

160

180

200

t

T
(t

)

 

 
Uninfected cells, T(t), τ

(a) Healthy, T (t)

0 50 100 150 200 250
0

50

100

150

200

250

300

t

I(
t)

 

 
Infected cells, I(t), τ

(b) Infected, I(t)

0 50 100 150 200 250
0

200

400

600

800

1000

1200

t

V
(t

)

 

 
Free HIV virus, V(t),τ

(c) Virus, V (t)

Figure 5: Stability of the E2 equilibrium with τ = 0.1
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Figure 6: Stability of the E2 equilibrium with τ = 1
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Figure 7: Stability of the E2 equilibrium with τ = 3

In figure 8 we take increasing values for c, the declination rate of virions, for the simulations we consider
the values for the parameters as s = 0.01, d = 0.02, a = 0.95, Tmax = 1200 b = 0.0027 α = 0.001 µ = 1,
p = 10, and τ = 4 we can observe that for a increasing value of c = 13 the periodic solutions have a smaller
period and they disappear for c large enough
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Figure 8: Periodic solutions for different values of c

The numerical simulations shows that if the clearance rate of viral particles c is sufficiently large (small)
then nonexistence (existence) periodic orbits.
Now taking α = 0.005 we can see the effect of saturation in this case the equilibrium is (314.2, 278.7, 1161.2)
and the dynamics for different values of τ are in figure 9, again we can observe periodic solutions for system.
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Figure 9: Dynamic of system with α = 0.005

8 Sensitivity analysis

In this section we provide a local sensitivity analysis of the basic reproduction number, in order to assess
which parameter has the greatest influence on changes of R0 values and hence the greatest effect in deter-
mining whether the disease will be cleared in the population (see e.g. [1]).
To this aim, denoting by Ψ the generic parameter of system (1), we evaluate the normalised sensitivity index

SΨ =
Ψ

R0

∂R0

∂Ψ

which indicates how sensitive R0 is to a change of parameter Ψ. A positive (resp. negative) index indicates
that an increase in the parameter value results in an increase (resp. decrease) in the R0 value.
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We consider the values s = 0.01, d = 0.02, a = 0.95, Tmax = 1200 b = 0.0027 α = 0.001 µ = 1, p = 10,
c = 2.4, in order to evaluate the normalised sensitivity index, we are able to show our results in figure 10,
in the figure we can appreciate that the parameters b, p the infection constant rate and the reproductive
rate respectively have a positive influence in the value of R0 which means if we increase or decrease any
of them by say 10% then R0 will increase or decrease by 9.9%, note that Tmax have the same effect. The
index for parameters µ and c which represent the death rate of infected cells and the rate of clean of virions,
show that increasing this values say by 10% will decrease the value of R0 almost by a 10%. While for the
parameters a, d an increase of 10% of their value will increase and decrease respectively R0 by 2% and 1.9%
and to increase s by a 100% will increase the value of R0 by 0.8%.
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Figure 10: Sensitivity index for R0 with respect to some chosen parameters

Other effects over R0 can be analyzed if we consider other values for the parameters.

9 Conclusions

In this paper, we extend the hepatitis model with mitotic transmission to incorporate the effect of saturation
infection function and an intracellular time delay between infection of a infected target cell and production
of new virus particles.
We have established results about the local and global stability of equilibria. We can conclude than the
infection-free stability is completely determined by the value of the basic reproductive number R0, if R0 ≤ 1
then the infection-free equilibrium will be stable and unstable if R0 > 1. For the infected equilibrium we

established conditions to ensure the local stability. We need the condition a ≤ d+
a

Tmax
[T2+I2] to ensure the

global stability for this equilibrium. We also established conditions for the occurrence of a Hopf Bifurcation.
And we established conditions to ensure the permanence of our system. Moreover we made an estimation
for the length of delay to preserve stability depending on the parameters of system (1).

For a non–cytopathic virus (d = µ), we found the sufficient and necessary conditions of the global stability
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for the infected equilibrium state of hepatitis infection model (1). We note that

T2 + I2 = T0 =
Tmax

2a

[
(a− d) +

√
(a− d)2 +

4as

Tmax

]
. (27)

Substituting the relation (27) into condition a ≤ d+ a
Tmax

[T2 + I2], we obtain

(a− d) ≤
√
(a− d)2 +

4as

Tmax

.

It is clear that the inequality is satisfied for all positive parameter values. From Theorem 4, we obtain the
following corollary.

Corollary 1. Assume that d = µ and R0 > 1, then the infected equilibrium state E2 of model (1) is globally
asymptotically stable for any τ ≥ 0.

Our analysis shows that if the infection is not cytopathic (d = µ) then nonexistence periodic solutions.
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