
Abstraction & Application 30 (2020) 44− 52 UADY

Kaprekar’s routine in polynomial rings

aAlan Daniel Villanueva Paredes, b José Alejandro Lara Rodrı́guez
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Abstract

The process of order, reverse and subtract is taken from integers right to polynomial rings with coefficients
in a finite field. We do such essentially for prime fields but we also comment a little on non prime fields.
Given that Kaprekar’s routine depends so much in the order of the set we work in, we first give an order
to the polynomial rings in question and then, we focus on the number and length of the cycles associated
to this routine, specifically for the two and three digits polynomials case.

Resumen

El proceso de ordenar, invertir y sustraer es tomado de los enteros a los anillos de polinomios con coefi-
cientes en un campo finito. Esto lo hacemos esencialmente para campos primos, pero también comentamos
un poco acerca de campos no primos. Dado que la rutina de Kaprekar depende del orden del conjunto en
cuestión, primero damos un orden a los anillos de polinomios y luego nos enfocamos en el número y
longitud de los ciclos asociados a dicha rutina, especı́ficamente para el caso de polinomios de dos y tres
dı́gitos.
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1. Introduction

D. R. Kaprekar was an indian mathematician whose contributions to number theory were of such impor-
tance that some concepts were named after him. The reader might have stumbled upon the words Kaprekar
phenomena or Kaprekar constant. This work is strongly related to the ideas behind these concepts.

We take a four digit integer, say, n = 3047 and compute the difference between the numbers that arise
from rearranging its digits in ascending and descending order, that is, 7430 − 0347 = 7083 and we do
the exact same with the number we just got, 8730− 0378 = 8352 and one more time to finally arrive to
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8532− 2358 = 6174 which is a special number since no matter which four digit number n with all digits
not the same we had chosen at the beginning, we would have always end up with 6174 and the same
process to this number would do nothing. This process of order, reverse and subtract is what we call Kaprekar’s
routine and the fact that 6174 is the arrival point for any four digit number is called Kaprekar phenomena. The
information related to 6174 can be found in [2] as written by Kaprekar himself.

While there are several brilliant and interesting results regarding Kaprekar’s routine that arise as one
change the base and the number of digits, many of them found in [4], the main subject of this article is to
apply this same idea of the routine to rings of polynomials with coefficients in finite fields. The main pro-
blem that awaits is that we will need an order for polynomials, but once we have made some agreements,
we will be able to give number and length of the cycles associated to the cases with two and three digit
polynomials.

2. Original routine

Let (B, D) be a pair of a base B and a number of digits D for a numeral system, S(B,D) the set of all
integers of D digits in base B and S(B,D) the set of integers of D digits in base B with all digits not the
same. Also, for a given n ∈ N ∪ {0}, let −→n be the number that arises when rearranging the digits of n in
descending order and←−n when rearranging in ascending order. Thus, Kaprekar’s routine can be defined as
κ : S(B,D) → S(B,D) such that κ(n) = −→n −←−n and this function is well defined. A proof of the latter can be
found in [4]. Consecutive iterations of this routine always lead to a cycle of integers since the set S(B,D) is
always finite for a given base and number of digits. That said, what is usually studied is the number and
length of the cycles associated to this (B, D) and how many iterations it takes to reach the cycle. We give a
few examples.

Example 2.1. The number 6174 is the fixed point for Kaprekar’s function in the case with base 10 and 4
digits. Furthermore, we know that the smallest m ∈ N such that κ(m)(n) = 6174 for any n ∈ S(B,D) is
m = 7, that is, it takes up to 7 iterations of Kaprekar’s routine for any integer in S(B,D) to reach 6174. A
proof can be found in [3].

In order to graphically display cycles of length more than one, and by this we mean other than fixed
points, we use the notation

a κ(a) κ(2)(a) · · · κ(m)(a) κ(m+1)(a) · · · κ(n−1)(a) κ(n)(a)

meaning that κ(m)(a) is the first image that is repeated and κ(n)(a) is the first time this image is repeated,
that is, after n applications of Kaprekar’s function over a certain integer a, we go back to the image of the
m-th application, thus getting a cycle of length n−m.

Example 2.2. Let us consider (B, D) = (56, 4). This pair has a cycle of length 4

[42, 39, 15, 14] [28, 23, 31, 28] [7, 55, 55, 48] [48, 6, 48, 8]

and one with length 3

[40, 7, 47, 16] [40, 23, 31, 16] [24, 7, 47, 32].
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Furthermore, these are the only cycles associated to this base and number of digits, that is, no matter which
integer of S(56,4) we start the routine with, consecutive applications of Kaprekar’s function will always lead
to one of those cycles.

Now that we have met the routine in the very set it was thought for, we extend the notion to polynomial
rings.

3. Routine in polynomial rings

Motivated by the usual comparison between Z and Fp[X] (reading on this subject can be found in
[1]), we now adapt the idea behind Kaprekar’s routine to Fp[X]. First, we have to write a polynomial as a
linear combination of the powers of a base, just as we do for integers and we leave here the appropriate
proposition.

Proposition 3.1. Let us consider a finite field with p elements Fp and take B ∈ Fp[X] such that it is not zero nor
a unit. For any non zero f ∈ Fp[X] there exist unique ai ∈ Fp[X] with deg ai < deg B for 0 ≤ i ≤ n where
n ∈N∪ {0} such that

f = anBn + an−1Bn−1 + · · ·+ a1B + a0

and an 6= 0.

Now, we are going to simplify things when writing a polynomial on a base B by adopting the notation

f = anBn + an−1Bn−1 + · · ·+ a1B + a0 = [an, an−1, · · · , a1, a0],

every time making very clear the base we are working on so that we do not have to make the base appear
explicitly in the notation.

Since this routine is all about ordering the elements of the field we are working on, it is essential for
us to decide the order of Fp[X]. We cannot stick to the usual degree based norm because there are several
polynomials that share the same degree while being different. What we propose here is an order based on
the coefficients of the polynomials.

We start by giving Fp some order. Let us remember that

Fp ∼= Zp = {0, 1, · · · , p− 1}

where of course every element of Zp is an equivalence class. Thus, the order we choose for Fp is none other
than 0 < 1 < 2 < · · · < p− 1 and this will allow us to work with Fp[X]. Now, let us note there is a natural
one to one correspondence from polynomials in Fp[X] to tuples, and this is

anxn + an−1xn−1 + · · ·+ a1x + a0 ←→ (an, an−1, · · · , a1, a0)

so now we use the lexicographical order to order the tuples and consequently the polynomials.

Example 3.1. Let us consider (x3 + 4x + 8) and (x3 + 5x + 2) in Fp[X]. Thus, we have

x3 + 4x + 8←→ (1, 0, 4, 8) < (1, 0, 5, 2)←→ x3 + 5x + 2

and so
x3 + 4x + 8 < x3 + 5x + 2.

As for the size of the tuples, we have to take the biggest degree among the degrees of the polynomials
we compare and add one, filling with zeros the tuple associated to the polynomial with the smaller degree
so that the comparison has any sense.
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Example 3.2. Let us consider (4x6 + 2x3 + 1) and (x3 + 2x + 1) in Fp[X]. We have

4x6 + 2x3 + 1←→ (4, 0, 0, 2, 0, 0, 1) > (0, 0, 0, 1, 0, 2, 1)←→ x3 + 2x + 1

so that
4x6 + 2x3 + 1 > x3 + 2x + 1.

In these cases where we compare polynomials of different degree we can just compare the degrees.

Let
−→
f and

←−
f be the polynomials we get by rearranging the digits of f ∈ Fp[X] in descending and

ascending order, respectively. We define Kaprekar’s routine as κ : Fp[X] → Fp[X] with κ( f ) =
−→
f −
←−
f so

we have

κ( f ) = [an, · · · , a1, a0]− [a0, a1, · · · , an]

= (anBn + · · ·+ a1B + a0)− (a0Bn + · · ·+ an−1B + an)

= (an − a0)Bn + (an−1 − a1)Bn−1 + · · ·+ (a1 − an−1)B + (a0 − an)

= [an − a0, an−1 − a1, · · · , a1 − an−1, a0 − an]

but there is a more general description. Let D = n + 1. Let
−→
f = [an, an−1, · · · , a1, a0] ∈ Fp[X] and let us

consider the differences di = an−(i−1) − ai−1 for 1 ≤ i ≤ bD/2c. Thus

κ( f ) =
−→
f −
←−
f = [d1, · · · , dbD/2c−1, dbD/2c, 0,−dbD/2c,−dbD/2c−1, · · · ,−d2,−d1] (3.1)

(with missing central zero for D even) and so, the only thing we need for calculating the path a polynomial
is taking by iterating Kaprekar’s routine is the differences.

Next, we see that when working with polynomials, there is no need for borrowing digits. We define

F
(n)
p [X] = { f ∈ Fp[X]| deg f < n}

and notice this is an additive subgroup of Fp[X]. Given a base B ∈ Fp[X] such that deg B = n, each digit of

a polynomial written on base B is actually an element of F
(n)
p [X] and, in order to be a digit of a polynomial

written on base B, the digit has to be in F
(n)
p [X] meaning that when calculating any sum of polynomials on

base B, the digits of the sum are still in F
(n)
p [X] given that a group is closed. Therefore, in contrast with the

integer case, in the polynomial case there is no carry overs of digits and this derives on easier computation
as we can see in equation (3.1) where we have a very regular form.

There is just one subtlety left. We can classify polynomials on equivalence classes by defining a relation
∼ where two polynomials are related if and only if their associated tuple of differences is the same.

Example 3.3. Let us consider the field F11 and the base B = x9 ∈ F11[X]. We have

[x8 + 6x3 + 9, x2, x5 + x3 + 7, 4x6 + x5, 9, x7] ∼ [x8 + 6x3, x7 − x2, 4x6 − x3 − 7, 0, 0, 0]

given that their tuple of differences is (d1, d2, d3) = (x8 + 6x3, x7 − x2, 4x6 − x3 − 7).

The reason to give such relation is that two related polynomials will lead to the same cycle given that
their images are completely defined by their differences, this way, we can focus on a few class representati-
ves instead of every polynomial while computing cycles.

The class representatives we choose are the polynomials with D digits and every element of the tuple
zero except possibly the first bD/2c entries, meaning that we can restrict to work with polynomials of the
form

[d1, · · · , dbD/2c−1, dbD/2c, 0, 0, · · · , 0, 0] ∈ Fp[X]

with di ∈ Fp[X] for 1 ≤ i ≤ bD/2c and p prime. With such polynomial we can get any possible image of
Kaprekar’s routine just by choosing the appropriates di’s.
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Two digits polynomials

Without loss of generality, we now work with polynomials of the form f = [d1, 0] ∈ Fp with p prime.
By induction, we get that κr( f ) = [2r−1d1,−2r−1d1] or κr( f ) = [−2r−1d1, 2r−1d1] where r ∈ N and r ≥ 1
and this leads to the first proposition of the section.

Proposition 3.2. Let us consider p = 2. For the case with the tuple (B, 2) with B ∈ F2[X] we have a unique cycle
of length one (fixed point), namely, the constant 0 to which we arrive in up to 2 iterations of the routine.

From now on, we work only with p > 2. Turns out in this case we cannot give a general form for the
cycles since virtually every d1 we give, leads to a different cycle. Given the latter, we focus our attention to
get the exact number of different cycles.

At the beginning of the section we gave the form of the image of κ after any quantity of applications.
We had two choices depending on the leading coefficient and now we explore the repercussions this may
have. We will always refer to the leading coefficient of a polynomial as an. We have an example.

Example 3.4. We consider f = [d1, 0] = [3x4 + 17x + 7, 0] ∈ F31[X] and identify an = 3. We have the cycle

[3x4 + 17x + 7, 0]

[3x4 + 17x + 7, 28x4 + 14x + 24]

[25x4 + 28x + 17, 6x4 + 3x + 14]

[19x4 + 25x + 3, 12x4 + 6x + 28]

[7x4 + 19x + 6, 24x4 + 12x + 25]

[17x4 + 24x + 19, 14x4 + 7x + 12]

Notice that it is always a choice about the leading coefficient for it is the one that decides the order when
doing the routine. For the second observation, we notice the apparition of the element [d1,−d1] or [−d1, d1]
in the cycle and this is because as we saw in the beginning of the section, each iteration of the Kaprekar’s
routine is nothing more than a multiplication by a factor of 2 which eventually leads to multiply by 1 since
2 doesn’t has an infinite order in F×p . Thus, our attention goes directly to the leading coefficient and the
latter cycle would look like this if we were to limit ourselves to the leading coefficients

[3, 0] [3, 28] [25, 6] [19, 12] [7, 24] [17, 14]

Then again, since this is all about multiplying by 2, we think of cosets of 〈2〉 in F×p so each leading coefficient
of the digits is in 3〈2〉 ∪ 28〈2〉 = {3, 6, 12, 24, 17} ∪ {28, 25, 19, 7, 14}, meaning that, in general, the leading
coefficients of a cycle in Fp[X] can be found in an〈2〉 ∪ −an〈2〉 where an is the leading coefficient of the
polynomial we started the iterations with. Even more, we can conjecture that the length of the cycle is
|an〈2〉 ∪ −a〈2〉|/2 and this also tells us that, given a p, the length of every cycle is the same. Not even the
base appears in the calculation of the length of the cycle.

Example 3.5. Let us consider [2x7 + x3 + 1, 0] ∈ F17[X]. The leading coefficient is 2 so the cycle is

[2, 0] [2, 15] [13, 4] [9, 8] [1, 16] [15, 2]
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and we notice that all the leading coefficients are in the set 2〈2〉 ∪ 15〈2〉 = {2, 4, 8, 16, 15, 13, 9, 1} whose
cardinality is consistent with the estimation of the length of the cycle we gave, |2〈2〉 ∪ 15〈2〉|/2 = 4.

If we change the leading coefficient for another in the same coset, we will have the same cycle. It is
necessary to remark that we mean same cycle in the sense of the cycle with just the leading coefficients
because it takes the change of only one coefficient (other than the leading one) to get a different cycle in the
general sense.

Example 3.6. We now consider [8x9 + 7x3 + 15, 0] ∈ F17[X]. Now the leading coefficient is 8 so the cycle is

[8, 0] [8, 9] [1, 16] [15, 2] [13, 4] [9, 8]

which is exactly the same cycle as before.

Now, since F×17 has actually two cosets of the subgroup 〈2〉, namely, 2〈2〉 and 3〈2〉 we now give an
example taking the leading coefficient from the latter.

Example 3.7. Let us consider [12x7 + 3x4 + 2x + 13, 0] ∈ F17[X]. The leading coefficient is 12 ∈ 3〈2〉 and
the cycle is

[12, 0] [12, 5] [7, 10] [3, 14] [11, 6] [5, 12]

which has the same length as in the cases before but being a visibly different cycle.

Once the importance of cosets has been pointed out, we give the next example

Example 3.8. Let us consider p = 31 and B ∈ Fp[X] such that deg B = 4. For this case, we have the cycles
of leading coefficients

[1, 30] [29, 2] [27, 4] [23, 15] [15, 16]

[3, 28] [25, 6] [19, 12] [7, 24] [17, 14]

[5, 26] [21, 10] [11, 20] [9, 22] [13, 18]

which are taken from the sets

〈2〉 ∪ 30〈2〉 = {1, 2, 4, 8, 16, 30, 29, 27, 23, 15}

3〈2〉 ∪ 28〈2〉 = {3, 6, 12, 24, 17, 28, 25, 19, 7, 14}
5〈2〉 ∪ 26〈2〉 = {5, 10, 20, 9, 18, 26, 21, 11, 22, 13}

respectively.
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Thus, no matter the leading coefficient we start with, we always end up in one of those cycles and the
rest of coefficients of the digits don’t have a say.

By now, we have noticed that if we want to know the exact number of different cycles, we have to know
the exact number of the subsets of the form a〈2〉 ∪ −a〈2〉 that F×p has and we denote this number by η(p).

In the next proposition we give a computable value for η(p).

Proposition 3.3. Given a prime number p > 2,

η(p) =


[F×p : 〈2〉] if − 1 ∈ 〈2〉

[F×p : 〈2〉]
2

if − 1 /∈ 〈2〉.

Now, putting our attention to the rest of the digits that are not the leading one, given that [d1,−d1] (or
its negative) is always an element of its respective cycle and that what happens with the leading coefficient
is all described, we now want to know how many polynomials up to degree n− 1 (given a base B such that
deg B = n) there exist. This is a straightforward computation since we just fix the leading coefficient and by
multiplicative principle, we get that we have pi polynomials of degree i with the fixed leading coefficient.
We conclude that there exist

1 + p + p2 + · · · pn−2 + pn−1 =
pn − 1
p− 1

polynomials of degree less than n whose leading coefficient is fixed.

Thus, we get the final statement of the section, however, it remains a conjecture.

Conjecture 3.4. Let us consider a prime number p > 2 and B ∈ Fp[X] a base such that deg B = n. The number of
cycles associated to Kaprekar’s routine for the two digits polynomials on base B case is

η(p)
(

pn − 1
p− 1

)
each of these cycles having length |〈2〉∪−1〈2〉|

2 . All that without considering the trivial cycle.

Example 3.9. Taking up example 3.8, we are now able to compute exactly how many different cycles there
are. We see that η(31) = 3, since we explicitly computed the sets. Therefore, there is a total of

η(31)
(

314 − 1
31− 1

)
= 92352

different cycles not considering the trivial one.

Three digits polynomials

For this case, we give directly the number of cycles, first for the case p = 2 and then for p > 2.

Proposition 3.5. Let B ∈ F2[X] be a base such that deg B = n. The number of fixed points associated to Kaprekar’s
routine for the three digits polynomials on base B case is

pn = 2n.

Even more, we reach these fixed points in up to two iterations.

Example 3.10. Let us consider p = 2 and B ∈ F2[X] a base such that deg B = 3. The class representatives
are [0, 0, 0], [1, 0, 0], [x, 0, 0], [x2, 0, 0], [x + 1, 0, 0], [x2 + 1, 0, 0], [x2 + x, 0, 0] y [x2 + x + 1, 0, 0] and, the fixed
points associated to each class are [0, 0, 0], [1, 0, 1], [x, 0, x], [x2, 0, x2], [x + 1, 0, x + 1], [x2 + 1, 0, x2 + 1], [x2 +
x, 0, x2 + x] y [x2 + x + 1, 0, x2 + x + 1], respectively. This way, we have a total of 2deg B = 23 = 8 fixed
points, just as we expected.
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Proposition 3.6. Let us consider a prime number p > 2 and B ∈ Fp[X] a base such that deg B = n. The number of
fixed points associated to Kaprekar’s routine for the three digits polynomials on base B case is

pn − 1
2

.

without considering the trivial fixed point. Even more, we reach these fixed points in up to two iterations.

Example 3.11. Let us consider p = 3 and B ∈ F3[X] a base such that deg B = 2. In this case, the class
representatives are [0, 0, 0], [x, 0, 0], [1, 0, 0], [x + 1, 0, 0], [2x, 0, 0], [2, 0, 0], [2x + 2, 0, 0], [2x + 1, 0, 0] and [x +
2, 0, 0] but we notice that a polynomial and its additive inverse both lead to the same fixed point, so aside
from the zero polynomial, we can rule out half of the class representatives. Thus, we reach the fixed points
κ([0, 0, 0]) = [0, 0, 0], κ([x, 0, 0]) = [x, 0, 2x], κ([1, 0, 0]) = [1, 0, 2], κ([x + 1, 0, 0]) = [x + 1, 0, 2x + 2], κ([x +
2, 0, 0]) = [x + 2, 0, 2x + 1], that is to say that, without considering the trivial fixed point, we have exactly
32−1

2 = 4 non trivial fixed points just as the formula stated.

Some examples on non prime finite fields

Despite us only working with finite fields of prime characteristic, we will see that these same formulae
and results work fine with non prime finite fields just making the proper changes.

Regarding the order of the elements of Fq with q = pn, we remember that

Fq =
Fp[X]

( f )

where f is an irreducible polynomial of Fp[X], and thus, the elements of Fq are polynomials of Fp[X] whose
degree is less than deg f and so we stick to the polynomial order we gave before.

Proposition 3.2 can be generalized to non prime finite fields, that is to say, the result provided is still
true for F2n [X] with n ∈N, since the characteristic does not change.

Example 3.12. Let us consider F4 and a base B ∈ F4[X]. Thus,

F4 =
F2[X]

(x2 + x + 1)
= {α + 1, α, 1, 0}

given that α is a root of x2 + x + 1 ∈ F2[X]. Now, we start the routine with a polynomial f = [(α + 1)x2 +
1, 0] ∈ F4[X] and get

κ( f ) = [(α + 1)x2 + 1, 0]− [0, (α + 1)x2 + 1] = [(α + 1)x2 + 1, (α + 1)x2 + 1]

κ(2)( f ) = [(α + 1)x2 + 1, (α + 1)x2 + 1]− [(α + 1)x2 + 1, (α + 1)x2 + 1] = [0, 0]

just as expected.

As for the case with p > 2

Example 3.13. We take F9 and a base B ∈ F9[X] such that deg B = 2. Now,

F9 =
F3[X]

(x2 + 1)
= {2α + 2, 2α + 1, 2α, α + 2, α + 1, α, 2, 1, 0}

given that α is a root of x2 + 1 ∈ F3. Now, we calculate η(9), where of course we extend the definition of η
now considering powers of p, and get

1〈2〉 ∪ −1〈2〉 = {1, 2}
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α〈2〉 ∪ −α〈2〉 = {α, 2α}
(α + 1)〈2〉 ∪ −(α + 1)〈2〉 = {α + 1, 2α + 2}
(α + 1)〈2〉 ∪ −(α + 2)〈2〉 = {α + 2, 2α + 1}

meaning that η(9) = 4. For a better understanding, we consider f = [2x + (2α + 1), 0] ∈ F9[X] (notice that
an = 2 ∈ 1〈2〉 ∪ −1〈2〉) and start the routine to get

[2x + (2α + 1), 0]

[2x + (2α + 1), x + (α + 2)]

[x + (α + 2), 2x + (2α + 1)]

a cycle of length |〈2〉 ∪−1〈2〉|/2 = 1. As stated in the prime case, the leading coefficients stay the same and
we just have to use the multiplicative principle over the non leading coefficients and this has to be done for
each set of the form a〈2〉 ∪ −a〈2〉. Thus, we can conclude we have

η(9)
(

92 − 1
9− 1

)
= 40

different cycles without considering the trivial one.

Regarding the three digits polynomials, we see that the situation is pretty much the same than that of
the two digits polynomials. We first consider q = 2n, but since the characteristic is still 2 and 1 = −1, the
result will be the same as if we stuck with q prime.

Example 3.14. Let us consider q = 4 and a base B ∈ F4[X] such that deg B = 2. Thus, the equivalence
classes are [(α+ 1)x + (α+ 1), 0], [(α+ 1)x + α, 0], [(α+ 1)x + 1, 0], [(α+ 1)x, 0], [αx + (α+ 1), 0], [αx + α, 0],
[αx + 1, 0], [αx, 0], [x + (α + 1), 0], [x + α, 0], [x + 1, 0], [x, 0], [(α + 1), 0], [α, 0], [1, 0], [0, 0] and after one
iteration of Kaprekar’s routine we reach the fixed points and they are all different. We conclude that there
are exactly pn = 42 = 16 different cycles.

Now, regarding the p > 2 case, we do not make an explicit computation since the smaller case q = 32

with a base of degree 2 would give us 81 classes to deal with, but we do mention it is still true that a
polynomial and its additive inverse they both reach the same fixed points so the computation is the same
as in the case with q prime, namely, qn−1

2 different cycles plus the trivial one.
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