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There is a wide range of works that have proposed mathematical models to describe the spread of infectious diseases within
human populations. Based on such models, researchers can evaluate the effect of applying different strategies for the treatment of
diseases. In this article, we generalize previousmodels by studying an SIR epidemicmodel with a nonlinear incidence rate, saturated
Holling type II treatment rate, and logistic growth. We compute the basic reproduction number and determine conditions for the
local stability of equilibria and the existence of backward bifurcation and Hopf bifurcation. We also show that, when the disease
transmission rate and treatment parameter are varied, our model undergoes a Bogdanov-Takens bifurcation of codimension 2 or 3.
Simulations of the solutions and numerical continuation of equilibria are carried out to generate 2D and 3D bifurcation diagrams,
as well as several related phase portraits that illustrate our results. Our work shows that incorporating these factors into epidemic
models can lead to very complex dynamics.

1. Introduction

Treatment is an important and effective method that can be
used for controlling the spread of infectious diseases within
a population. In epidemic models, the treatment function
represents the probability that each infected individual has
of receiving treatment against the disease at a given time.
Many classical models incorporated treatment rates that were
assumed to be proportional to the number of infectives.
Ideally, if we face a curable infectious disease, all infected
people should receive treatment. In practice, however, it is
known that communities have limited medical resources
for the treatment of diseases, so providing this service puts
great pressure on public health infrastructure. Hence, it is
more realistic to consider saturated type treatment functions,
which tend to a finite limit as the number of infectives
increases.

The authors in [1] considered an SIR epidemicmodel with
bilinear incidence rate 𝛽𝑆𝐼 and piecewise treatment function:

ℎ (𝐼) = {{{
𝑟𝐼, if 0 ≤ 𝐼 ≤ 𝐼0;𝑟𝐼0, if 𝐼 > 𝐼0. (1)

This means that the treatment rate is proportional to the
number of infectives when the capacity of treatment is not
reached; otherwise, it takes the maximal capacity.

In [2], Zhang and Liu studied a model with nonlinear
incidence rate 𝜆𝑆𝐼1 + 𝑘𝐼 (2)

and saturated treatment functionℎ (𝐼) = 𝑟𝐼1 + 𝛼𝐼 . (3)

The authors studied there the local stability of equilibria
and showed that backward bifurcation may occur when the
number of infectives is high.Thismodel was further explored
in [3], where Zhou and Fan modified the treatment function
to the following form

ℎ (𝐼) = 𝛼𝐼𝜔 + 𝐼 (4)

and determined sufficient conditions for the existence of
backward bifurcation, as well as the existence, stability, and
direction of Hopf bifurcation.
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Li et al. studied in [4] an SIR model with logistic growth
rate, bilinear incidence rate and a saturated treatment func-
tion of the form 𝜆𝐼/(1+𝜀𝐼).They studied the local stability of
the disease-free and endemic equilibria and showed that the
system exhibits backward bifurcation, Hopf bifurcation, and
Bogdanov-Takens bifurcation of codimension 2.

The study of nonlinear equations in the modeling of
biological processes has gained attention in recent years due
to the fact that many systems in nature present inherently
nonlinear dynamics. Recent research has shown that the use
of nonlinear, saturated functions in both epidemicmodels [2–
5] and ecological (predator–prey)models [6, 7] can lead to the
appearance of very complex dynamics from themathematical
viewpoint, such as several types of bifurcation, bistability,
heteroclinic and homoclinic orbits, and periodic oscillations.
Although these functions make the models more difficult to
analyze, they have been proved to represent more accurately
the processes that we want to describe, so nonlinear models
are worthy of being studied in greater detail.

In this paper, we will modify the SIRmodel introduced in
[4] by using the nonlinear saturated incidence rate studied in
[2, 3]. The rest of the paper is organized as follows. We begin
by presenting ourmodel and establishing the basic properties
of solutions in Section 2. Then, we analyze the different
cases for the existence of equilibrium points in Section 3. In
Section 4, we determine necessary and sufficient conditions
for the stability of the disease-free and endemic equilibria,
and we show that a backward bifurcation may occur. In
Section 5, we prove that our model may also present a Hopf
bifurcation. In Section 6, we compute the normal form of
Bogdanov-Takens bifurcation of codimension 2 and 3 for our
model. In Section 7,we carry out numerical simulations of the
solutions of the model and perform numerical continuation
of equilibria to generate 2D and 3D bifurcation diagrams,
which illustrate the complex dynamics that can arise under
certain conditions. Finally, we summarize our results and
discuss their implications for epidemic control strategies in
Section 8.

2. Description of the Model

Based on the above, we propose here the following model:

d𝑆
d𝑡 = 𝑟𝑆 (1 − 𝑆𝐾) − 𝛽𝑆𝐼1 + 𝛼𝐼 ,
d𝐼
d𝑡 = 𝛽𝑆𝐼1 + 𝛼𝐼 − (𝜇 + 𝑑 + 𝜎) 𝐼 − 𝜆𝐼1 + 𝜀𝐼 ,
d𝑅
d𝑡 = 𝜎𝐼 + 𝜆𝐼1 + 𝜀𝐼 − 𝜇𝑅,

(5)

where the variables 𝑆(𝑡), 𝐼(𝑡), 𝑅(𝑡) denote the the number
of susceptible, infected, and recovered individuals at time𝑡, respectively. The parameter 𝑟 is the intrinsic growth rate
of susceptible population, while 𝐾 represents the carrying
capacity of population; 𝜇 represents the natural death rate, 𝑑
is the disease-induced death rate, and𝜎 is the natural recovery
rate of infected population. The incidence rate 𝛽𝑆𝐼/(1 + 𝛼𝐼)
is of saturated type: 𝛽 is the maximal disease transmission

rate, while the factor 1/(1 + 𝛼𝐼) models the “psychological”
or inhibition effect when the number of infectives is large.
The parameter 𝜆 is the maximal treatment rate for each
individual per time unit, and 𝜀 is a constant that measures the
saturation effect caused by infected population being delayed
for treatment (1/𝜀 is called the half-saturation constant). We
will assume that 𝜆 is nonnegative, while all other parameters
are positive constants.

We can notice that the variable 𝑅 does not appear in the
first two equations of system (5). Therefore, we can omit the
third equation and focus on the following subsystem of (5):

d𝑆
d𝑡 = 𝑟𝑆 (1 − 𝑆𝐾) − 𝛽𝑆𝐼1 + 𝛼𝐼 ,
d𝐼
d𝑡 = 𝛽𝑆𝐼1 + 𝛼𝐼 − Θ𝐼 − 𝜆𝐼1 + 𝜀𝐼 .

(6)

Notice that we have writtenΘ = 𝜇+𝑑+𝜎 for simplicity. From
now on, we will use the parameter Θ to account for the total
removal rate of infectives.

It is easily verified that all solutions of (6) with nonnega-
tive initial conditions remain nonnegative for 𝑡 ≥ 0.
Lemma 1. Let𝑀 = max{𝑆(0), 𝐾}. Then the region

Ω = {(𝑆, 𝐼) ∈ R
2
+ : 𝑆 ≤ 𝑀, 𝑆 + 𝐼 ≤ (1 + 𝑟Θ)𝑀} (7)

is a positively invariant and attracting set for system (6).

Proof. From the first equation of (6), we have

d𝑆
d𝑡 ≤ 𝑟𝑆 (1 − 𝑆𝐾) . (8)

Hence, a standard comparison argument yields
lim sup𝑡󳨀→∞𝑆(𝑡) ≤ 𝑀.

Let𝑁(𝑡) = 𝑆(𝑡) + 𝐼(𝑡). Then

d𝑁
d𝑡 = 𝑟𝑆 (1 − 𝑆𝐾) − Θ𝐼 − 𝜆𝐼1 + 𝜀𝐼≤ (𝑟 + Θ) 𝑆 − Θ (𝑆 + 𝐼) ≤ (𝑟 + Θ)𝑀 − Θ𝑁. (9)

Thus, we have

0 ≤ 𝑁 (𝑡) ≤ (𝑟 + Θ)𝑀Θ = (1 + 𝑟Θ)𝑀 (10)

for 𝑡 sufficiently large, so all solutions of (6) are ultimately
bounded and enter the regionΩ.
3. Existence of Equilibria

It can be easily verified that system (6) always has a disease-
free equilibrium (DFE), which we will denote by 𝐸0, and it is
given by

𝐸0 = (𝐾, 0) . (11)
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We can compute the basic reproduction number 𝑅0 of
the model by means of the next-generation matrix method.
Following the procedure described in [8], we obtain

𝑅0 = 𝐾𝛽Θ + 𝜆. (12)

We will now determine some conditions for the existence
of positive endemic equilibria. For that, we begin by making
the right-hand side of (6) equal to zero. Assuming that 𝑆, 𝐼 ̸=0, we obtain

𝑟 (1 − 𝑆𝐾) − 𝛽𝐼1 + 𝛼𝐼 = 0, (13)

𝛽𝑆1 + 𝛼𝐼 − Θ − 𝜆1 + 𝜀𝐼 = 0. (14)

Solving for 𝑆 in (13) and substituting the resulting expression
in (14), we obtain, after simplification, the following cubic
equation in 𝐼:

Q (𝐼) fl 𝑎3𝐼3 + 𝑎2𝐼2 + 𝑎1𝐼 + 𝑎0 = 0, (15)

where 𝑎3 = Θ𝛼2𝜀,
𝑎2 = 𝐾𝛽2𝜀𝑟 + Θ (𝛼2 + 2𝛼𝜀) + 𝜆𝛼2 − 𝐾𝛽𝛼𝜀,
𝑎1 = 𝐾𝛽2𝑟 + Θ (2𝛼 + 𝜀) + 2𝜆𝛼 − 𝐾𝛽 (𝛼 + 𝜀) ,
𝑎0 = Θ + 𝜆 − 𝐾𝛽.

(16)

For each positive root 𝐼∗ of the polynomial Q, we can make

𝑆∗ = 1 + 𝛼𝐼∗𝛽 (Θ + 𝜆1 + 𝜀𝐼∗) > 0, (17)

so (𝑆∗, 𝐼∗) is a positive equilibrium of (6). Thus, the number
of endemic equilibria of the model is the same as the number
of positive roots of Q.

It is clear that the coefficient 𝑎3 is always positive. On the
other hand, we have 𝑎0 > 0 when 𝑅0 < 1, and 𝑎0 < 0 when𝑅0 > 1. The discriminant of the cubic polynomial Q is given
by 𝐷 = 𝑎21𝑎22 − 4𝑎0𝑎32 − 4𝑎31𝑎3 + 18𝑎0𝑎1𝑎2𝑎3 − 27𝑎20𝑎23 , (18)

and it has the property that Q has one real root and two
complex roots when 𝐷 < 0, three real roots (at least two
of which are equal) when 𝐷 = 0, and three distinct real
roots when 𝐷 > 0. Note that 𝐷 and the discriminant Δ
introduced by Tartaglia and Cardano have opposite sign [9].
Let 𝑥+ and 𝑥− be the critical points ofQ, i.e., the points where
its derivative equals zero. By calculation, we obtain

𝑥± = −2𝑎2 ± √4𝑎22 − 12𝑎1𝑎36𝑎3 . (19)

Assume first that 𝑅0 < 1. Then Q(0) = 𝑎0 > 0. If 𝑥+ is
complex or 𝑥+ ≤ 0, then Q is increasing on (0,∞), which
implies that it has no positive roots. This allows us to make a
graphical analysis of said roots, similar toTheorem 0.1 in [5],
from which we get the following theorem.

�eorem 2. Let𝐷 be given by (18) and assume 𝑅0 < 1.
(1) If𝐷 < 0, then system (6) has no endemic equilibria.
(2) If 𝐷 = 0, then there is a unique endemic equilibrium

when 𝑥+ > 0 and no endemic equilibria otherwise.
(3) If 𝐷 > 0, then there are two endemic equilibria when𝑥+ > 0 and no endemic equilibria otherwise.

Next, for the case when 𝑅0 > 1, we haveQ(0) < 0. We can
see that Q is increasing on (−∞, 0) whenever 𝑥− is complex
or 𝑥− ≥ 0, in which case there are no negative roots. In this
case, we also have the following result.

Lemma 3. Assume 𝑅0 > 1. If 𝑎2 < 0, then 𝑎1 < 0.
Proof. Assume 𝑅0 > 1 and let 𝑚 = min{𝛼, 𝜀}. Then (Θ + 𝜆 −𝐾𝛽)𝛼 < 0. Recall that

𝑎1 = 𝐾𝛽2𝑟 + Θ (2𝛼 + 𝜀) + 2𝜆𝛼 − 𝐾𝛽 (𝛼 + 𝜀)
= 𝐾𝛽2𝑟 + (Θ + 𝜆) 𝛼 + Θ𝜀 − 𝐾𝛽𝜀
+ (Θ + 𝜆 − 𝐾𝛽) 𝛼.

(20)

and

𝑎2 = 𝐾𝛽2𝜀𝑟 + Θ (𝛼2 + 2𝛼𝜀) + 𝜆𝛼2 − 𝐾𝛽𝛼𝜀
= 𝐾𝛽2𝜀𝑟 + 𝛼 [(Θ + 𝜆) 𝛼 + 2Θ𝜀 − 𝐾𝛽𝜀]
≥ 𝑚[𝐾𝛽2𝑟 + (Θ + 𝜆) 𝛼 + 2Θ𝜀 − 𝐾𝛽𝜀]
≥ 𝑚[𝐾𝛽2𝑟 + (Θ + 𝜆) 𝛼 + Θ𝜀 − 𝐾𝛽𝜀] > 𝑚𝑎1.

(21)

Based on this, we obtain the following result.

�eorem 4. Assume 𝑅0 > 1. Then system (6) has a unique
endemic equilibrium.

Proof. Let 𝐷 be given by (18). If 𝐷 < 0, them Q(𝐼) has one
real root and two complex conjugate roots. Using the fact that
lim𝑡󳨀→+∞Q(𝐼) = +∞ and Q(0) < 0, it follows that the real
root is positive.

If 𝐷 = 0, then Q(𝐼) has three real roots, being at least
two of them equal and located either at 𝑥− or at 𝑥+. Note
that if the three real roots of Q(𝐼) were positive, this would
imply 𝑎2 < 0 due to the fact that 𝑎2 is minus the sum of
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the roots of Q(𝐼). Lemma 3 would imply 𝑎1 < 0, and hence𝑥− and 𝑥+, the roots of Q󸀠(𝐼), would be real and of opposite
sign. The fact that lim𝑡󳨀→−∞Q(𝐼) = −∞ and Q(0) < 0 would
emphasize that 𝑥− would be the negative one and a double
root of Q(𝐼), contradicting that the three roots of Q(𝐼) are
positive.Therefore, at least one root ofQ(𝐼) is negative in this
case, and itmust be its double root. Hence, the remaining root
of Q(𝐼)must be positive, and Q(0) is negative.

If𝐷 > 0, then the three roots ofQ(𝐼) are real and different
from each other. The previous discussion shows that 𝑥− < 0,
implying that two roots are negative and the remaining root
is positive.

Note that in all the previous three cases there is only one
positive root. Therefore, system (6) has a unique endemic
equilibrium and the theorem is proved.

We will now consider the case 𝑅0 = 1. In this case, we
obtain 𝑎0 = 0, so (15) becomes (𝑎3𝐼2 + 𝑎2𝐼 + 𝑎1)𝐼 = 0. Hence,
the number of endemic equilibria depends on the number of
positive roots of the quadratic equation:

Q1 (𝐼) fl 𝑎3𝐼2 + 𝑎2𝐼 + 𝑎1 = 0. (22)

We canmake a graphical analysis of the roots ofQ1 by looking
at the signs of 𝑎1 and 𝑎2. For that, we will first prove the
following result.

Lemma 5. Assume 𝑅0 = 1. If 𝑎1 ≥ 0, then 𝑎2 ≥ 0.
Proof. We will proceed by contradiction. Assume 𝑅0 = 1,𝑎1 ≥ 0, and 𝑎2 < 0. Then 𝐾𝛽 − 𝜆 > 0, and 𝜀 must satisfy𝜀 > 𝛼 in order to have 𝑎2 < 0.

Note that

𝑎2 = 𝐾𝛽2𝜀𝑟 + 𝛼 [𝐾𝛽𝛼 + 2𝜀 (𝐾𝛽 − 𝜆) − 𝐾𝛽𝜀]
= 𝐾𝛽2𝜀𝑟 + 𝛼 [𝐾𝛽𝛼 + 𝜀 (𝐾𝛽 − 2𝜆)]
= 𝐾𝛽2𝜀𝑟 + 𝛼 [𝐾𝛽𝛼 + 𝜀 (𝐾𝛽 − 𝜆) − 𝜆𝜀]

(23)

and 𝑎1 = 𝐾𝛽2/𝑟+ [𝐾𝛽𝛼+𝜀(𝐾𝛽−𝜆)−𝐾𝛽𝜀] = 𝐾𝛽2/𝑟+ [𝐾𝛽𝛼−𝜆𝜀].
If 𝜀 ≥ 𝛼, then

𝑎2 ≥ 𝛼[𝐾𝛽2𝑟 + [𝐾𝛽𝛼 + 𝜀 (𝐾𝛽 − 𝜆) − 𝜆𝜀]]
≥ 𝛼[𝐾𝛽2𝑟 + [𝐾𝛽𝛼 − 𝜆𝜀]] = 𝛼𝑎1. (24)

Therfore, being 𝛼 > 0, this implies 𝑎1 < 0 if we assume 𝑎2 < 0,
which contradicts our assumption.

�eorem 6. Assume 𝑅0 = 1.
(1) If 𝑎1 < 0, then (6) has a unique endemic equilibrium.
(2) If 𝑎1 ≥ 0 and 𝑎2 ≥ 0, then (6) has no endemic

equilibria.

Proof. If 𝑎1 < 0, then the roots of Q1(𝐼) are real of opposite
sign. This proves case (1) of the theorem. If 𝑎1 ≥ 0 and 𝑎2 ≥0, then the roots of Q1(𝐼) are real non-positive or complex
conjugate, proving case (2). Lemma 5 shows that the case with𝑎1 ≥ 0 and 𝑎2 < 0 never happens.
4. Stability of Equilibria

In this section, we will study the local and global stability of
equilibria for system (6).

4.1. Stability of the DFE and Backward Bifurcation. The
Jacobian matrix of system (6) evaluated at the disease-free
equilibrium 𝐸0 = (𝐾, 0) is given by

𝐽 (𝐸0) = (−𝑟 −𝛽𝐾0 (Θ + 𝜆) (𝑅0 − 1)) , (25)

so the characteristic equation is𝑃 (𝜁) fl det (𝐽 (𝐸0) − 𝜁𝐼)= (𝜁 + 𝑟) (𝜁 − (Θ + 𝜆) (𝑅0 − 1)) = 0. (26)

Thus, there are two eigenvalues: 𝜁1 = −𝑟 and 𝜁2 = (Θ+𝜆)(𝑅0−1). It is clear that 𝜁1 is always negative, while 𝜁2 < 0 when𝑅0 < 1 and 𝜁2 > 0 when 𝑅0 > 1. If 𝜁2 ̸= 0, we know by
Hartman-Grobman’s theorem that the solutions of (6) and its
linearization are qualitatively equivalent near 𝐸0, so we can
conclude the following.

�eorem 7. The disease-free equilibrium 𝐸0 is a stable node
when 𝑅0 < 1, and it is a saddle when 𝑅0 > 1.

According to the above theorem and Theorems 2 and 4,
we can see that 𝐸0 is locally stable whenever there are no
endemic equilibria. Furthermore, we can establish the global
stability of 𝐸0 as follows.
�eorem 8. If (6) has no endemic equilibria, then the disease-
free equilibrium 𝐸0 is globally asymptotically stable.

Proof. If there is no endemic equilibrium, then 𝐸0 is the
only equilibrium in the region Ω = {(𝑆, 𝐼) ∈ R2+ : 𝑆 ≤𝑀, 𝑆 + 𝐼 ≤ (1 + 𝑟/Θ)𝑀}, which was proved to be positively
invariant for system (6). By the Poincaré–Bendixson theory,
every solution trajectory starting in Ω will approach either
an equilibrium or a closed orbit contained in Ω. Since 𝐸0 is
located in the boundary of said region, there cannot exist a
closed orbit totally contained inΩ enclosing 𝐸0. This implies
that all solutions of the system with initial conditions in Ω
must approach 𝐸0 as 𝑡 tends to infinity.

In the case when 𝑅0 = 1, one of the eigenvalues of 𝐽(𝐸0)
vanishes, so we cannot apply Hartman-Grobman’s theorem.
In such case, we can resort to the center manifold theory.

�eorem 9. Let𝜂 = 𝜀𝜆 − (Θ + 𝜆) (Θ + 𝜆𝑟𝐾 + 𝛼) . (27)
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If 𝑅0 = 1 and 𝜂 ̸= 0, then 𝐸0 is a saddle-node; i.e., the
neighborhood of 𝐸0 consists of a parabolic sector and two
hyperbolic sectors. If 𝜂 > 0, the hyperbolic sectors are on the
half-plane above the 𝑆-axis; if 𝜂 < 0, the parabolic sector is on
the upper half-plane.

Proof. Assume 𝑅0 = 1. Making the change of variables 𝑆 =𝑆 + 𝐾, 𝐼 = 𝐼, we obtain that system (6) is equivalent to

d𝑆
d𝑡 = − 𝑟𝐾𝑆 (𝑆 + 𝐾) − 𝛽𝐼 (𝑆 + 𝐾)1 + 𝛼𝐼 ,
d𝐼
d𝑡 = 𝛽𝐼 (𝑆 + 𝐾)1 + 𝛼𝐼 − Θ𝐼 − 𝜆𝐼1 + 𝜀𝐼 ,

(28)

which has an equilibrium point at the origin. The Jacobian
matrix of this system at (0, 0) is

(−𝑟 −𝛽𝐾0 0 ) , (29)

with eigenvalues 0 and −𝑟, and respective eigenvectors(−𝐾𝛽/𝑟, 1) and (1, 0). Using the change of variables 𝑆 =−(𝐾𝛽/𝑟)𝑥 + 𝑦, 𝐼 = 𝑥, we obtain the system in diagonal form:

d𝑥
d𝑡 = 0𝑥 + 𝐹 (𝑥, 𝑦) ,
d𝑦
d𝑡 = −𝑟𝑦 + 𝐺 (𝑥, 𝑦) , (30)

where𝐹(𝑥, 𝑦) = (𝜀𝜆−𝐾𝛼𝛽−𝐾𝛽2/𝑟)𝑥2+𝛽𝑥𝑦+O(|(𝑥, 𝑦)|3) and𝐺(𝑥, 𝑦) = 𝐾𝛼𝛽𝑥2 +𝛽𝑥𝑦− (𝑟/𝐾)𝑦2 +O(|(𝑥, 𝑦)|3). We now use
the local center manifold theorem (see [10, 11]) to compute
the expansion of the center manifold 𝑦 = ℎ(𝑥) and substitute
in the first equation of (30). This yields the flow in the center
manifold, which is given by the following equation:

d𝑥
d𝑡 = (𝜀𝜆 − 𝐾𝛼𝛽 − 𝐾𝛽2𝑟 ) 𝑥2 + 𝐾𝛼𝛽2𝑟 𝑥3 + O (𝑥4) . (31)

Then the dynamics of (30) near the origin are determined by
the quadratic term of the above equation, provided that 𝜀𝜆 −𝐾𝛼𝛽 − 𝐾𝛽2/𝑟 is nonzero. Since 𝑅0 = 1, then 𝛽 = (Θ + 𝜆)/𝐾,
so

𝜀𝜆 − 𝐾𝛼𝛽 − 𝐾𝛽2𝑟 = 𝜀𝜆 − (Θ + 𝜆) (𝛼 + Θ + 𝜆𝑟𝐾 ) = 𝜂. (32)

Thus, the equilibrium at the origin corresponds to a saddle-
node whenever 𝜂 ̸= 0. Using 𝑆 − 𝐾 = 𝑆 = −(𝐾𝛽/𝑟)𝑥 + 𝑦 and𝐼 = 𝐼 = 𝑥 to go back to the original coordinates, we can see
that 𝐸0 has stable directions on the positive and negative 𝑆-
axes and, when 𝐼 ̸= 0 is close to zero, we have d𝐼/d𝑡 > 0 for𝜂 > 0 and d𝐼/d𝑡 < 0 for 𝜂 < 0, hence the theorem.

If we consider 𝛽 as a bifurcation parameter, we can
calculate a critical value 𝛽∗ = (Θ + 𝜆)/𝐾 such that 𝑅0 < 1
when 𝛽 < 𝛽∗ and 𝑅0 > 1 when 𝛽 > 𝛽∗. The Jacobian matrix

of the system evaluated at 𝐸0 when 𝛽 = 𝛽∗ has a simple
zero eigenvalue, whose corresponding right eigenvector 𝑤 =(𝑤1, 𝑤2)𝑇 and left eigenvector V = (V1, V2)𝑇 are given by

𝑤 = (−𝐾𝛽∗𝑟1 ) ,
V = (01) . (33)

We can now apply Theorem 4.1 from [12] to calculate the
bifurcation constants 𝑎 and 𝑏. Let 𝑓 = (𝑓1, 𝑓2), where𝑓(𝑆, 𝐼, 𝛽) is the function defined by the right-hand side of (6).
Taking into account that V1 = 0 and V2 = 1, we have

𝑎 = 𝑤21 𝜕2𝑓2 (𝐸0, 𝛽∗)𝜕𝑆2 + 2𝑤1𝑤2 𝜕2𝑓2 (𝐸0, 𝛽∗)𝜕𝑆𝜕𝐼
+ 𝑤22 𝜕2𝑓2 (𝐸0, 𝛽∗)𝜕𝐼2 ,

𝑏 = 𝑤1 𝜕2𝑓2 (𝐸0, 𝛽∗)𝜕𝑆𝜕𝛽 + 𝑤2 𝜕2𝑓2 (𝐸0, 𝛽∗)𝜕𝐼𝜕𝛽 .
(34)

The nonzero second partial derivatives of 𝑓2 evaluated at(𝐸0, 𝛽∗) are 𝜕2𝑓2 (𝐸0, 𝛽∗)𝜕𝑆𝜕𝐼 = 𝛽∗,
𝜕2𝑓2 (𝐸0, 𝛽∗)𝜕𝐼2 = 2 (𝜀𝜆 − 𝐾𝛼𝛽∗) ,
𝜕2𝑓2 (𝐸0, 𝛽∗)𝜕𝐼𝜕𝛽 = 𝐾,

(35)

so we obtain

𝑎 = −2𝐾𝛽∗𝑟 𝛽∗ + 2 (𝜀𝜆 − 𝐾𝛼𝛽∗)
= 2 [𝜀𝜆 − (Θ + 𝜆) (Θ + 𝜆𝑟𝐾 + 𝛼)] = 2𝜂 (36)

and 𝑏 = 𝐾. Since 𝑏 is always positive, the type of bifurcation
that occurs at𝐸0 when the basic reproduction number crosses
unity depends only on the sign of 𝑎. Thus, from [12,Theorem
4.1], we can conclude the following result.

�eorem 10. If 𝜂 > 0, then system (6) undergoes a backward
bifurcation at 𝐸0 when 𝑅0 crosses unity, while if 𝜂 < 0, the
bifurcation is forward.

An example of the bifurcation diagram for the model
when 𝜂 > 0 can be seen in Figure 1, which depicts the number
of infected individuals at equilibria as 𝑅0 varies. We can see
that there is a critical value𝑅∗ such that for𝑅0 ∈ (𝑅∗, 1) there
exist two endemic equilibria: one stable and one unstable.
As 𝑅0 crosses the value 𝑅∗, the two endemic equilibria
coalesce at a limit point LP and disappear via a saddle-node
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Figure 1: Backward bifurcation diagram of the system. Solid lines indicate stable equilibria; dotted lines indicate unstable equilibria. The
vertical axis indicates the size of infected population at equilibria.

bifurcation. When 𝑅0 = 1, an endemic equilibrium switches
stability with the DFE at a point BP and becomes negative for𝑅0 > 1.

The phase portrait when 𝑅0 < 𝑅∗ can be seen in
Figure 2(a) using the parameters 𝑟 = 10, 𝐾 = 100, 𝛽 = 0.1,𝛼 = 0.01, Θ = 2.3, 𝜆 = 68.66, and 𝜀 = 0.5. In this case,
the DFE is globally asymptotically stable. We can also see
that the origin (0, 0) is a saddle point: this can be verified via
the linearization, but we omit this analysis since the trivial
equilibrium is not interesting from an epidemiological point
of view.

With the parameters 𝑟 = 4, 𝐾 = 100, 𝛽 = 0.0097, 𝛼 = 1,Θ = 0.6, 𝜆 = 0.4, and 𝜀 = 5, we obtain the phase portrait
shown in Figure 2(b) with two endemic equilibria. The first
one, a saddle point, has an approximate value of 𝐼 = 0.0415,
and the second one, a stable node, has an approximate value
of 𝐼 = 0.2403. For this set of parameters, 𝜂 = 399/400 >0 and 𝑅∗ = 0.946 < 𝑅0 = 0.97 < 1. Theorem 10
indicates that if we increase 𝛽 in order to obtain 𝑅0 = 1, we
have a backward bifurcation at the disease-free equilibrium𝐸0.

We can calculate an expression for the critical value 𝑅∗
at which the two endemic equilibria collide with each other

as follows. Assume that 𝑅0 < 1 and 𝜂 > 0. Since there are
two positive equilibria for 𝑅∗ < 𝑅0 < 1, this corresponds
to case (3) of Theorem 2. These two equilibria coalesce when
the discriminant 𝐷 given by (18) equals zero. The condition𝐷 = 0 is equivalent to

(−27𝑎23) 𝑎20 + (18𝑎1𝑎2𝑎3 − 4𝑎32) 𝑎0 + 𝑎21𝑎22 − 4𝑎31𝑎3= 0, (37)

which can be viewed as a quadratic equation in 𝑎0. Since 𝑎0 =(Θ + 𝜆)(1 − 𝑅0) > 0, we must take the positive root of this
equation, which is given by

𝑎0 = −𝐵 − √𝐵2 − 4𝐴𝐶2𝐴 , (38)

where 𝐴 = −27𝑎23 < 0, 𝐵 = 18𝑎1𝑎2𝑎3 − 4𝑎32 and 𝐶 =𝑎21𝑎22 − 4𝑎31𝑎3. Then, when 𝑅0 = 𝑅∗, we can solve for 𝑅∗ in the
equation 𝑎0 = (Θ + 𝜆)(1 − 𝑅∗) and substitute, which yields

𝑅∗ = 1 − 𝑎0Θ + 𝜆 = 1 − −18𝑎1𝑎2𝑎3 + 4𝑎32 − √(18𝑎1𝑎2𝑎3 − 4𝑎32)2 + 108𝑎23 (𝑎21𝑎22 − 4𝑎31𝑎3)−54𝑎23 (Θ + 𝜆)
= 1 − 18𝑎1𝑎2𝑎3 − 4𝑎32 + √(18𝑎1𝑎2𝑎3 − 4𝑎32)2 + 108𝑎23 (𝑎21𝑎22 − 4𝑎31𝑎3)54𝑎23 (Θ + 𝜆) .

(39)

Since there is no endemic equilibrium when 𝑅0 < 𝑅∗,
it follows from Theorem 8 that the DFE will be globally
asymptotically stable in such case. Hence, we can assert the
following theorem, which could also be proved alternatively
by the method of Lyapunov functionals.

�eorem 11. Assume𝑅0 < 𝑅∗, where𝑅∗ is given by (39).Then
the disease-free equilibrium 𝐸0 of (6) is globally asymptotically
stable.

4.2. Stability of Endemic Equilibria. The Jacobian matrix
evaluated at an endemic equilibrium 𝐸∗ = (𝑆∗, 𝐼∗) is given
by𝐽 (𝐸∗)

= ( 𝑟𝐾 (𝐾 − 2𝑆∗) − 𝛽𝐼∗1 + 𝛼𝐼∗ − 𝛽𝑆∗(1 + 𝛼𝐼∗)2𝛽𝐼∗1 + 𝛼𝐼∗ 𝛽𝑆∗(1 + 𝛼𝐼∗)2 − Θ − 𝜆(1 + 𝜀𝐼∗)2)
(40)
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Figure 2: Phase portrait of the system when a backward bifurcation occurs at 𝑅0 = 1. In (a), the DFE is globally asymptotically stable and𝑅0 < 𝑅∗. In (b), the DFE is unstable, there are two endemic equilibria, and 𝑅∗ < 𝑅0 < 1.
and the characteristic equation is 𝜁2 − tr(𝐽(𝐸∗))𝜁 +
det(𝐽(𝐸∗)) = 0, where

tr (𝐽 (𝐸∗)
= − 𝑟𝐾 (2𝑆∗ − 𝐾) − 𝛽𝐼∗1 + 𝛼𝐼∗ + 𝛽𝑆∗(1 + 𝛼𝐼∗)2 − Θ− 𝜆(1 + 𝜀𝐼∗)2 ,

det (𝐽 (𝐸∗))
= [Θ + 𝜆(1 + 𝜀𝐼∗)2 ] [ 𝑟𝐾 (2𝑆∗ − 𝐾) + 𝛽𝐼∗1 + 𝛼𝐼∗ ]

− 𝑟𝛽𝑆∗ (2𝑆∗ − 𝐾)𝐾 (1 + 𝛼𝐼∗)2 .
(41)

By the Routh–Hurwitz criteria, we know that all roots of
the characteristic equation have negative real parts if and
only if tr(𝐽(𝐸∗)) < 0 and det(𝐽(𝐸∗)) > 0. This allows us
to determine necessary and sufficient conditions for local
stability of the endemic equilibrium, as stated in the following
theorem.

�eorem 12. Let 𝐸∗ = (𝑆∗, 𝐼∗) be an endemic equilibrium of
(6). Then 𝐸∗ is locally asymptotically stable if and only if the
following inequalities hold:

𝛽𝑆∗(1 + 𝛼𝐼∗)2 < 𝑟𝐾 (2𝑆∗ − 𝐾) + 𝛽𝐼∗1 + 𝛼𝐼∗ + Θ + 𝜆(1 + 𝜀𝐼∗)2 , (42)

𝑟𝛽𝑆∗ (2𝑆∗ − 𝐾)𝐾 (1 + 𝛼𝐼∗)2 < [Θ + 𝜆(1 + 𝜀𝐼∗)2 ] [ 𝑟𝐾 (2𝑆∗ − 𝐾) + 𝛽𝐼∗1 + 𝛼𝐼∗ ] . (43)

Moreover, we can notice that the characteristic equation
has one positive and one negative root whenever det(𝐽(𝐸∗)) <0, so we can conclude the following result.

�eorem 13. If 𝐸∗ = (𝑆∗, 𝐼∗) is an endemic equilibrium of (6)
and𝑟𝛽𝑆∗ (2𝑆∗ − 𝐾)𝐾 (1 + 𝛼𝐼∗)2

> [Θ + 𝜆(1 + 𝜀𝐼∗)2 ] [ 𝑟𝐾 (2𝑆∗ − 𝐾) + 𝛽𝐼∗1 + 𝛼𝐼∗ ] ,
(44)

then 𝐸∗ is a saddle point.
5. Hopf Bifurcation

Since the disease-free equilibrium 𝐸0 lies on the boundary
of the invariant region Ω, it is clear that there cannot exist a

closed orbit surrounding 𝐸0. When inequality (44) holds, the
endemic equilibrium is a saddle and there is no possibility of
a Hopf bifurcation. Thus, we will only consider the existence
of Hopf bifurcation around an endemic equilibrium 𝐸∗ when
(43) holds. In the following, we will write 𝐸∗ = (𝑆∗, 𝐼∗) =(𝑆∗(𝛽), 𝐼∗(𝛽)) to emphasize the dependence of the endemic
equilibrium on the parameter 𝛽, while we regard all other
parameters as fixed.

�eorem 14. Let 𝐸∗ = (𝑆∗(𝛽), 𝐼∗(𝛽)) be an endemic equilib-
rium of (6) and define

𝐻(𝛽) = 𝛽𝑆∗ (𝛽)(1 + 𝛼𝐼∗ (𝛽))2 − 𝑟𝐾 (2𝑆∗ (𝛽) − 𝐾)
− 𝛽𝐼∗ (𝛽)1 + 𝛼𝐼∗ (𝛽) − Θ − 𝜆(1 + 𝜀𝐼∗ (𝛽))2 .

(45)
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Assume that 𝛽0 is a positive root of𝐻 such that (43) holds when𝛽 = 𝛽0 and
𝑟𝐾 (2𝑆∗ (𝛽0) − 𝐾) + Θ + 𝜆(1 + 𝜀𝐼∗ (𝛽0))2 ̸= 0. (46)

Then system (6) undergoes a Hopf bifurcation around 𝐸∗ at𝛽 = 𝛽0.
Moreover, let Γ be given by (56). If Γ < 0, there exists

a family of stable periodic orbits as 𝛽 decreases from 𝛽0
(supercritical bifurcation); if Γ > 0, there exists a family of
unstable periodic orbits as 𝛽 increases from 𝛽0 (subcritical
bifurcation).

Proof. From the discussion in Section 4.2, we know that the
characteristic polynomial at𝐸∗ has a pair of purely imaginary
roots if and only if (43) holds and𝐻(𝛽) = 0.Thenwe know by
Theorem 12 that 𝐸∗ switches stability as 𝛽 crosses the critical
value 𝛽0. By calculation, we have

d
d𝛽 tr (𝐽 (𝐸∗))󵄨󵄨󵄨󵄨𝛽=𝛽0 = 𝑆∗ − 𝐼∗ (1 + 𝛼𝐼∗)(1 + 𝛼𝐼∗)2 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝛽=𝛽0
= 1𝛽0 [ 𝑟𝐾 (2𝑆∗ (𝛽0) − 𝐾) + Θ + 𝜆(1 + 𝜀𝐼∗ (𝛽0))2] .

(47)

By Theorem 3.4.2 from [13], we see that 𝛽 = 𝛽0 is a Hopf
bifurcation point for (6) when (46) holds.

Next, set 𝑡 = (1 + 𝛼𝐼)(1 + 𝜀𝐼)𝜏. By rewriting 𝜏 as 𝑡, we
obtain the following system equivalent to (6):

d𝑆
d𝑡 = 𝑟𝑆 (1 − 𝑆𝐾) (1 + 𝛼𝐼) (1 + 𝜀𝐼) − 𝛽𝑆𝐼 (1 + 𝜀𝐼) ,
d𝐼
d𝑡 = 𝛽𝑆𝐼 (1 + 𝜀𝐼) − Θ𝐼 (1 + 𝛼𝐼) (1 + 𝜀𝐼)

− 𝜆𝐼 (1 + 𝛼𝐼) .
(48)

By the change of variables 𝑆 = 𝑥 + 𝑆∗, 𝐼 = 𝑦 + 𝐼∗, we can
transform (48) into

d𝑥
d𝑡 = 𝑎11𝑥 + 𝑎12𝑦 + 𝛼1𝑥2 + 𝛼2𝑥𝑦 + 𝛼3𝑦2 + 𝛼4𝑥2𝑦

+ 𝛼5𝑥𝑦2 + 𝛼6𝑥2𝑦2,
d𝑦
d𝑡 = 𝑎21𝑥 + 𝑎22𝑦 + 𝛼7𝑥𝑦 + 𝛼8𝑦2 + 𝛼9𝑥𝑦2 + 𝛼10𝑦3,

(49)

where

𝑎11 = (1 + 𝜀𝐼) (𝐼∗𝛼𝑟 − 2𝐼∗𝑆∗𝛼𝑟𝐾 − 𝐼∗𝛽 + 𝑟 − 2𝑆∗𝑟𝐾 ) ,
𝑎12 = 𝑆∗ (2𝐼∗𝛼𝑟𝜀 − 2𝐼∗𝑆∗𝛼𝑟𝜀𝐾 − 2𝐼∗𝛽𝜀 + 𝛼𝑟 + 𝑟𝜀

− 𝑆∗𝛼𝑟𝐾 − 𝑆∗𝑟𝜀𝐾 − 𝛽) ,
𝑎21 = 𝐼∗𝛽 (𝐼∗𝜀 + 1) ,𝑎22 = −3𝐼∗2Θ𝛼𝜀 + 2𝛽𝑆∗𝐼∗𝜀 − 2Θ𝐼∗𝛼 − 2Θ𝐼∗𝜀− 2𝜆𝐼∗𝛼 + 𝛽𝑆∗ − Θ − 𝜆,
𝛼1 = −𝑟 (𝐼∗𝛼 + 1) (𝐼∗𝜀 + 1)𝐾 ,
𝛼2 = 2𝐼∗𝛼𝑟𝜀 − 4𝐼∗𝑆∗𝛼𝑟𝜀𝐾 − 2𝐼∗𝛽𝜀 + 𝛼𝑟 + 𝑟𝜀 − 2𝑆∗𝛼𝑟𝐾

− 2𝑆∗𝑟𝜀𝐾 − 𝛽,
𝛼3 = 𝑆∗𝜀 (𝛼𝑟 − 𝑆∗𝛼𝑟𝐾 − 𝛽) ,
𝛼4 = −𝑟 (2𝐼∗𝛼𝜀 + 𝛼 + 𝜀)𝐾 ,
𝛼5 = 𝜀(𝛼𝑟 − 2𝑆∗𝛼𝑟𝐾 − 𝛽) ,
𝛼6 = −𝑟𝛼𝜀𝐾 ,
𝛼7 = 𝛽 (2𝐼∗𝜀 + 1) ,𝛼8 = −3𝐼∗Θ𝛼𝜀 + 𝛽𝑆∗𝜀 − Θ𝛼 − Θ𝜀 − 𝜆𝛼,𝛼9 = 𝛽𝜀,𝛼10 = −Θ𝛼𝜀.

(50)

Let 𝐸 denote the origin of the 𝑥-𝑦 plane. Then

det (𝐽 (𝐸)) = 𝑎11𝑎22 − 𝑎21𝑎12 > 0 (51)

since (43) holds by hypothesis. Let 𝜔 = √det(𝐽(𝐸)) andmake𝑢 = −𝑥, V = (𝑎11/𝜔)𝑥 + (𝑎12/𝜔)𝑦. Then the normal form of
Hopf bifurcation for (6) is

d𝑢
d𝑡 = −𝜔V + 𝑓 (𝑢, V) ,
dV
d𝑡 = 𝜔𝑢 + 𝑔 (𝑢, V) , (52)

where𝑓 (𝑢, V)
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= (−𝑎112𝛼3𝑎122 + 𝑎11𝛼2𝑎12 − 𝛼1)𝑢2
+ (−2𝜔𝑎11𝛼3𝑎122 + 𝜔𝛼2𝑎12 )𝑢V − 𝛼3𝜔2V2𝑎122
+ (𝑎112𝛼5𝑎122 − 𝑎11𝛼4𝑎12 )𝑢3
+ (2𝜔𝑎11𝛼5𝑎122 − 𝜔𝛼4𝑎12 )𝑢2V + 𝛼5𝜔2𝑢V2𝑎122 − 𝛼6𝑎112𝑢4𝑎122
− 2𝛼6𝑎11𝜔𝑢3V𝑎122 − 𝛼6𝜔2𝑢2V2𝑎122 ,

(53)𝑔 (𝑢, V)
= (𝑎113𝛼3𝜔𝑎122 − 𝑎112𝛼2𝜔𝑎12 + 𝑎112𝛼8𝜔𝑎12 + 𝑎11𝛼1𝜔 − 𝑎11𝛼7𝜔 )𝑢2
+ (2𝑎112𝛼3𝑎122 − 𝑎11𝛼2𝑎12 + 2𝑎11𝛼8𝑎12 − 𝛼7)𝑢V
+ (𝜔𝑎11𝛼3𝑎122 + 𝜔𝛼8𝑎12 ) V2

+ (𝑎113𝛼10𝜔𝑎122 − 𝑎113𝛼5𝜔𝑎122 + 𝑎112𝛼4𝜔𝑎12 − 𝑎112𝛼9𝜔𝑎12 )𝑢3
+ (3𝑎112𝛼10𝑎122 − 2𝑎112𝛼5𝑎122 + 𝑎11𝛼4𝑎12 − 2𝑎11𝛼9𝑎12 )𝑢2V
+ (3𝜔𝑎11𝛼10𝑎122 − 𝜔𝑎11𝛼5𝑎122 − 𝜔𝛼9𝑎12 )𝑢V2 + 𝜔2𝛼10V3𝑎122
+ 𝑎113𝛼6𝑢4𝜔𝑎122 + 2𝑎112𝛼6V𝑢3𝑎122 + 𝜔𝑎11𝛼6V2𝑢2𝑎122 .

(54)

Let

Γ = 116 [𝑓𝑢𝑢𝑢 + 𝑓𝑢VV + 𝑔𝑢𝑢V + 𝑔VVV]
+ 116𝜔 [𝑓𝑢V (𝑓𝑢𝑢 + 𝑓VV) − 𝑔𝑢V (𝑔𝑢𝑢 + 𝑔VV) − 𝑓𝑢𝑢𝑔𝑢𝑢
+ 𝑓VV𝑔VV] ,

(55)

where 𝑓𝑢V denotes (𝜕2𝑓/𝜕𝑢𝜕V)(0, 0), etc. An explicit expres-
sion for Γ can be computed using the above expressions for𝑓 and 𝑔 and substituting 𝜔 = √𝑎11𝑎22 − 𝑎21𝑎12. Using the
software Maple [14], we obtain

Γ = 18𝑎123 (𝑎11𝑎22 − 𝑎21𝑎12) × [[3 (𝛼10 + 𝛼53 ) 𝑎12
− 2𝛼3 (𝛼8 + 𝛼22 )] (𝑎11𝑎22 − 𝑎21𝑎12)2
+ [2 [(𝛼1 + 𝛼72 ) 𝛼3 − (𝛼9 + 𝛼4) 𝑎12
+ (𝛼2 − 𝛼8) (𝛼8 + 𝛼22 )] 𝑎12𝑎11 + [(3𝛼10 + 𝛼5) 𝑎12
− 4𝛼3 (𝛼8 + 𝛼22 )] 𝑎112 + (𝛼7𝛼8 − 𝛼1𝛼2) 𝑎122]
⋅ (𝑎11𝑎22 − 𝑎21𝑎12) + 2 [(𝛼1 + 𝛼72 ) 𝛼3 + (𝛼2 − 𝛼8)
⋅ (𝛼8 + 𝛼22 )] 𝑎12𝑎113 − 2𝛼3 (𝛼8 + 𝛼22 ) 𝑎114
+ (3𝛼7𝛼8 − 3𝛼1𝛼2) 𝑎122𝑎112 + 2𝑎11 (𝛼1 + 𝛼72 ) (𝛼1
− 𝛼7) 𝑎123] .

(56)

By Theorem 3.4.2 and (3.4.11) in [13], the proof is
complete.

Theorem 14 can be viewed as a generalization ofTheorem
3.1 of [4] that takes into account the nonlinearity of the
incidence rate. Notice that the critical value 𝛽0 at which the
Hopf bifurcation takes place is given implicitly as a root of the
function𝐻. Due to the complex conditions that are required
to ensure the existence of Hopf bifurcation, we do not give an
explicit expression for the value of 𝛽0 in terms of the system
parameters. However, its approximate value can be computed
by numerical methods, as we will see in Section 7.

6. Bogdanov-Takens Bifurcation

From the analysis in Section 4.2, we know that the Jacobian
matrix of an endemic equilibrium 𝐸∗ has a double zero
eigenvalue if and only if

tr (𝐽 (𝐸∗)) = 0,
det (𝐽 (𝐸∗)) = 0. (57)

When this occurs, the endemic equilibrium may present
a Bogdanov-Takens (BT) bifurcation. We will now inves-
tigate the conditions under which BT bifurcation takes
place.

6.1. Codimension 2 BT Bifurcation. Let 𝐸∗ = (𝑆∗, 𝐼∗) be an
endemic equilibrium of (6) such that (57) holds. Making the
change of variables 𝑆 = 𝑆 + 𝑆∗, 𝐼 = 𝐼 + 𝐼∗, we can transform
system (6) into

d𝑆
d𝑡 = 𝑏1𝑆 + 𝑏2𝐼 + 𝑏3𝑆2 + 𝑏4𝑆𝐼 + 𝑏5𝐼2 + O (󵄨󵄨󵄨󵄨󵄨(𝑆, 𝐼)󵄨󵄨󵄨󵄨󵄨3) ,
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d𝐼
d𝑡 = 𝑏6𝑆 + 𝑏7𝐼 + 𝑏8𝑆𝐼 + 𝑏9𝐼2 + O (󵄨󵄨󵄨󵄨󵄨(𝑆, 𝐼)󵄨󵄨󵄨󵄨󵄨3) ,

(58)

where

𝑏1 = 𝑟𝐾 (𝐾 − 2𝑆∗) − 𝛽𝐼∗1 + 𝛼𝐼∗ ,
𝑏2 = − 𝛽𝑆∗(1 + 𝛼𝐼∗)2 ,
𝑏3 = − 𝑟𝐾,
𝑏4 = − 𝛽(1 + 𝛼𝐼∗)2 ,
𝑏5 = 𝛼𝛽𝑆∗(1 + 𝛼𝐼∗)3 ,
𝑏6 = 𝛽𝐼∗1 + 𝛼𝐼∗ ,
𝑏7 = 𝛽𝑆∗(1 + 𝛼𝐼∗)2 − Θ − 𝜆(1 + 𝜀𝐼∗)2 ,
𝑏8 = 𝛽(1 + 𝛼𝐼∗)2 ,
𝑏9 = − 𝛼𝛽𝑆∗(1 + 𝛼𝐼∗)3 + 𝜆𝜀(1 + 𝜀𝐼∗)3 .

(59)

Condition (57) implies that 𝑏1+𝑏7 = 0 and 𝑏1𝑏7−𝑏2𝑏6 = 0.
It is clear that 𝑏2 ̸= 0, so 𝑏7 = −𝑏1 and 𝑏6 = −𝑏21 /𝑏2. Using this
and applying the change of variables 𝑆 = 𝑏2𝑥, 𝐼 = −𝑏1𝑥 + 𝑦,
we obtain the system

d𝑥
d𝑡 = 𝑦 + 𝑐1𝑥2 + 𝑐2𝑥𝑦 + 𝑐3𝑦2 + O (󵄨󵄨󵄨󵄨(𝑥, 𝑦)󵄨󵄨󵄨󵄨3) ,
d𝑦
d𝑡 = 𝑐4𝑥2 + 𝑐5𝑥𝑦 + 𝑐6𝑦2 + O (󵄨󵄨󵄨󵄨(𝑥, 𝑦)󵄨󵄨󵄨󵄨3) , (60)

where

𝑐1 = 𝑏5𝑏21𝑏2 − 𝑏1𝑏4 + 𝑏2𝑏3,
𝑐2 = 𝑏4 − 2𝑏1𝑏5𝑏2 ,
𝑐3 = 𝑏5𝑏2 ,

𝑐4 = 𝑏31𝑏5𝑏2 − 𝑏21𝑏4 + 𝑏21𝑏9 + 𝑏2𝑏1𝑏3 − 𝑏2𝑏1𝑏8,
𝑐5 = −2𝑏5𝑏21𝑏2 + 𝑏1𝑏4 − 2𝑏1𝑏9 + 𝑏2𝑏8,
𝑐6 = 𝑏1𝑏5𝑏2 + 𝑏9.

(61)

Finally, to obtain the normal form of BT bifurcation, we
perform the near-identity transformation 𝑥 = 𝑢 + ((𝑐2 +𝑐6)/2)𝑢2 + 𝑐3𝑢V, 𝑦 = V − 𝑐1𝑢2 + 𝑐6𝑢V. This yields the system

d𝑢
d𝑡 = V + O (|(𝑢, V)|3) ,
dV
d𝑡 = 𝑐4𝑢2 + (2𝑐1 + 𝑐5) 𝑢V + O (|(𝑢, V)|3) . (62)

For the BT bifurcation to be nondegenerate, we introduce the
assumptions 𝑐4 ̸= 0 and 2𝑐1 + 𝑐5 ̸= 0, obtaining thus the
following theorem [15, 16].

�eorem 15. Suppose that𝐸∗ is an endemic equilibrium of (6)
such that (57) holds, 𝑐4 ̸= 0, and 2𝑐1 + 𝑐5 ̸= 0. Then 𝐸∗ is a cusp
of codimension 2, that is, a Bogdanov-Takens singularity.

In the following,wewill calculate the approximate saddle-
node, Hopf, and homoclinic bifurcation curves by determin-
ing the versal unfolding of system (6). For that, we will use𝛽 and 𝜆 as the bifurcation parameters. Let 𝛽 = 𝛽0 + 𝜖1 and𝜆 = 𝜆0 + 𝜖2, where 𝜖1 and 𝜖2 are close to zero. Suppose that𝐸∗ satisfies (57) for system (6) with 𝛽 = 𝛽0 and 𝜆 = 𝜆0. Then
we obtain the perturbed system:

d𝑆
d𝑡 = 𝑟𝑆 (1 − 𝑆𝐾) − (𝛽0 + 𝜖1) 𝑆𝐼1 + 𝛼𝐼 ,
d𝐼
d𝑡 = (𝛽0 + 𝜖1) 𝑆𝐼1 + 𝛼𝐼 − Θ𝐼 − (𝜆0 + 𝜖2) 𝐼1 + 𝜀𝐼 . (63)

By the transformation 𝑆 = 𝑆 + 𝑆∗, 𝐼 = 𝐼 + 𝐼∗, we can rewrite
(63) as

d𝑆
d𝑡 = 𝑝00 + 𝑝10𝑆 + 𝑝01𝐼 + 𝑝20𝑆2 + 𝑝11𝑆𝐼 + 𝑝02𝐼2

+ Ψ1 (𝑆, 𝐼, 𝜖1, 𝜖2) ,
d𝐼
d𝑡 = 𝑞00 + 𝑞10𝑆 + 𝑞01𝐼 + 𝑞11𝑆𝐼 + 𝑞02𝐼2

+ Ψ2 (𝑆, 𝐼, 𝜖1, 𝜖2) ,
(64)
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where

𝑝00 = 𝑟𝑆∗ (𝐾 − 𝑆∗)𝐾 − (𝛽0 + 𝜖1) 𝑆∗𝐼∗𝛼𝐼∗ + 1 ,
𝑝01 = −(𝛽0 + 𝜖1) 𝑆∗(𝛼𝐼∗ + 1)2 ,𝑝10

= 𝐼∗𝐾𝛼𝑟 − 2𝐼∗𝑆∗𝛼𝑟 − (𝛽0 + 𝜖1) 𝐼∗𝐾 + 𝐾𝑟 − 2𝑟𝑆∗𝐾 (𝛼𝐼∗ + 1) ,
𝑝20 = − 𝑟𝐾,
𝑝11 = − (𝛽0 + 𝜖1)(𝛼𝐼∗ + 1)2 ,
𝑝02 = (𝛽0 + 𝜖1) 𝑆∗𝛼(𝛼𝐼∗ + 1)3 ,
𝑞00 = (𝛽0 + 𝜖1) 𝑆∗𝐼∗𝛼𝐼∗ + 1 − Θ𝐼∗ − (𝜆0 + 𝜖2) 𝐼∗𝜀𝐼∗ + 1 ,
𝑞10 = (𝛽0 + 𝜖1) 𝐼∗𝐼∗𝛼 + 1 ,
𝑞01 = − 1(𝐼∗𝛼 + 1)2 (𝐼∗𝜀 + 1)2 (𝐼∗4Θ𝛼2𝜀2 + 2𝐼∗3Θ𝛼2𝜀+ 2𝐼∗3Θ𝛼𝜀2 − 𝐼∗2𝑆∗ (𝛽0 + 𝜖1) 𝜀2 + 𝐼∗2Θ𝛼2+ 4𝐼∗2Θ𝛼𝜀 + 𝐼∗2Θ𝜀2 + 𝐼∗2𝛼2 (𝜆0 + 𝜖2)− 2𝐼∗𝑆∗ (𝛽0 + 𝜖1) 𝜀 + 2𝐼∗Θ𝛼 + 2𝐼∗Θ𝜀+ 2𝐼∗𝛼 (𝜆0 + 𝜖2) − 𝑆∗ (𝛽0 + 𝜖1) + Θ + (𝜆0 + 𝜖2)) ,
𝑞11 = (𝛽0 + 𝜖1)(𝐼∗𝛼 + 1)2 ,
𝑞02 = − 1(𝐼∗𝛼 + 1)3 (𝐼∗𝜀 + 1)3 (𝐼∗3𝑆∗𝛼 (𝛽0 + 𝜖1) 𝜀3− 𝐼∗3𝛼3 (𝜆0 + 𝜖2) 𝜀 + 3𝐼∗2𝑆∗𝛼𝛽1𝜀2− 3𝐼∗2𝛼2 (𝜆0 + 𝜖2) 𝜀 + 3𝐼∗𝑆∗𝛼 (𝛽0 + 𝜖1) 𝜀− 3𝐼∗𝛼 (𝜆0 + 𝜖2) 𝜀 + 𝑆∗𝛼 (𝛽0 + 𝜖1) − (𝜆0 + 𝜖2) 𝜀) ,

(65)

and Ψ1(𝑆, 𝐼, 𝜖1, 𝜖2), Ψ2(𝑆, 𝐼, 𝜖1, 𝜖2) are smooth functions in(𝑆, 𝐼) at least of third order. We can now obtain the generic
normal form:

d𝑢
d𝑡 = V,
dV
d𝑡 = 𝜙1 (𝜖) + 𝜙2 (𝜖) V + 𝑢2 + sgn (𝑐20) 𝑐11√󵄨󵄨󵄨󵄨𝑐20󵄨󵄨󵄨󵄨𝑢V,

(66)

where

𝑐20 = 𝑐4 = 𝑏31𝑏5𝑏2 − 𝑏21𝑏4 + 𝑏21𝑏9 + 𝑏2𝑏1𝑏3 − 𝑏2𝑏1𝑏8
𝑐11 = 2𝑐1 + 𝑐5 = 2𝑏2𝑏3 − 𝑏1𝑏4 − 2𝑏1𝑏9 + 𝑏2𝑏8, (67)

while 𝜙1(𝜖) and 𝜙2(𝜖) can be computed by the formulas in [17,
Equation (53)]. If the transversality condition󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝜙1 (𝜖)𝜕𝜖1 𝜕𝜙1 (𝜖)𝜕𝜖2𝜕𝜙2 (𝜖)𝜕𝜖1 𝜕𝜙2 (𝜖)𝜕𝜖2
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜖=0

̸= 0 (68)

is satisfied, we can obtain local approximations of the bifurca-
tion curves for the original system, as stated in the following
theorem.

�eorem 16. Suppose that𝐸∗ is an endemic equilibrium of (6)
such that (57) and (68) hold, 𝑐20 ̸= 0, and 𝑐11 ̸= 0. Then the
system admits the following behavior near 𝐸∗.

(1) There is a saddle-node bifurcation curve:𝑆𝑁 = {(𝜖1, 𝜖2) : 𝜙1 (𝜖) = 0, 𝜙2 (𝜖) ̸= 0} . (69)

(2) There is a Hopf bifurcation curve:

𝐻 = {(𝜖1, 𝜖2) : 𝜙1 (𝜖)
= − 󵄨󵄨󵄨󵄨𝑐20󵄨󵄨󵄨󵄨𝑐211 (𝜙2 (𝜖))2 , sgn (𝑐20𝑐11) 𝜙2 (𝜖) > 0} . (70)

(3) There is a homoclinic bifurcation curve:

𝐻𝐿− = {(𝜖1, 𝜖2) : 𝜙1 (𝜖) = −49 󵄨󵄨󵄨󵄨𝑐20󵄨󵄨󵄨󵄨25𝑐211 (𝜙2 (𝜖))2
+ O((𝜙2 (𝜖))5/2) , sgn (𝑐20𝑐11) 𝜙2 (𝜖) > 0} . (71)

Theorems 15 and 16 generalize the corresponding results
by Li et al. [4, Theorems 4.1 & 4.2], which were proved for
a model with bilinear incidence, by taking into account a
saturated nonlinear incidence rate. It is worth noticing that
our results require the hypotheses 𝑐20 ̸= 0 and 𝑐11 ̸= 0, which
were not present in [4]. When these conditions are not met,
system (6) may undergo a bifurcation of codimension higher
than 2, which exhibits the richer dynamics that our model
has.

6.2. Codimension 3 BT Bifurcation. From Theorem 15, we
know that the endemic equilibrium 𝐸∗ is a BT point of
codimension 2 when (57) holds, 𝑐20 ̸= 0 and 𝑐11 ̸= 0. If 𝑐11 = 0,
then 𝐸∗may be a cusp of codimension 3. In such case, we can
compute the corresponding normal form for system (6) by
following the same steps as in [18, 19], which we summarize
as follows:
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(i) First, we take the Taylor expansion (58) of system (6)
up to fourth-order terms and diagonalize the linear
part using the transformation 𝑆 = 𝑏2𝑥, 𝐼 = −𝑏1𝑥 + 𝑦,
obtaining

d𝑥
d𝑡 = 𝑦 + ∑

2≤𝑖+𝑗≤4

𝐿 𝑖𝑗𝑥𝑖𝑦𝑗 + O (󵄨󵄨󵄨󵄨(𝑥, 𝑦)󵄨󵄨󵄨󵄨5) ,
d𝑦
d𝑡 = ∑

2≤𝑖+𝑗≤4

𝑀𝑖𝑗𝑥𝑖𝑦𝑗 + O (󵄨󵄨󵄨󵄨(𝑥, 𝑦)󵄨󵄨󵄨󵄨5) . (72)

(ii) We apply a near-identity transformation to eliminate
the non-resonant terms, obtaining the system

d𝑢
d𝑡 = V,
dV
d𝑡 = 𝑐20𝑢2 + ∑

3≤𝑖≤4

(𝑐𝑖0𝑢𝑖 + 𝑐𝑖−1,1𝑢𝑖−1V) + O (|(𝑢, V)|5) . (73)

(iii) Apply a near-identity transformation to eliminate the𝑢2V term and rescale the coordinates in the above
system, which becomes

d𝑢̃
d𝑡 = Ṽ,
dṼ
d𝑡 = 𝑢̃2 + O (𝑢̃3) + 𝐸𝑢̃3Ṽ + O (|(𝑢̃, Ṽ)|4) Ṽ. (74)

(iv) Make 𝜙(𝑢̃) = 𝑢̃2 + O(𝑢̃3) and Φ(𝑢̃) = ∫𝑢̃
0
𝜙(𝑢̃)d𝑢̃

and eliminate the term O(𝑢̃3) by the transformation𝑋 󳨀→ (3Φ(𝑢̃))1/3, 𝑌 󳨀→ Ṽ, 𝑡 󳨀→ (3Φ(𝑢̃))−2/3𝜙(𝑢̃)𝑡,
obtaining

d𝑋
d𝑡 = 𝑌,
d𝑌
d𝑡 = 𝑋2 + 𝐸𝑋3𝑌 + O (|(𝑋, 𝑌)|4) 𝑌, (75)

where

𝐸 = 𝑐31𝑐20 − 𝑐30𝑐21𝑐420 . (76)

Alternatively, the coefficient𝐸 can be computed by the
formulas in [20].

Conditions 𝑐20 ̸= 0 and 𝐸 ̸= 0 imply that system (6) is
topologically equivalent to (75) near the endemic equilibrium𝐸∗, so we can conclude the following.

�eorem 17. Suppose that (57) holds. If 𝑐20 ̸= 0, 𝐸 ̸= 0 and𝑐11 = 0, then 𝐸∗ is a BT point of codimension 3, and the system
(6) localized at 𝐸∗ is topologically equivalent to (75).

Hom
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Figure 3: Intersection of the bifurcation diagram of the cusp type of
BT bifurcation of codimension 3 with the 2-sphere 𝑆.

In [21], it was shown that a generic unfolding with
the parameters 𝜖 = (𝜖1, 𝜖2, 𝜖3) of the codimension 3 cusp
singularity is 𝐶∞ equivalent to

d𝑋
d𝑡 = 𝑌,
d𝑌
d𝑡 = 𝜖1 + 𝜖2𝑌 + 𝜖3𝑋𝑌 + 𝑋2 − 𝑋3𝑌 + O (|𝑋, 𝑌|4) 𝑌. (77)

For this system, the plane 𝜖1 = 0, excluding the origin in the
parameter space, is a saddle-node bifurcation surface. When𝜖1 > 0, system (77) has no equilibria, so the bifurcation
surfaces are in the half-space 𝜖1 < 0. The bifurcation diagram
of system (77) is a cone, which can be visualized by drawing
its intersection with the 2-sphere:𝑆 = {(𝜖1, 𝜖2, 𝜖3) : 𝜖1 < 0, 𝜖21 + 𝜖22 + 𝜖23 = 𝜎̃2} (78)

when 𝜎̃ is sufficiently small, as shown in Figure 3.
There are three bifurcation curves on 𝑆: aHopf bifurcation

curve𝐻, a homoclinic bifurcation curve𝐻𝑜𝑚, and a double
limit cycle bifurcation curve 𝑆𝑁𝑙𝑐. The curve 𝑆𝑁𝑙𝑐 connects
the two points ℎ2 and ℎ𝑜𝑚2 and is tangent to the curves𝐻 and𝐻𝑜𝑚 at these two points respectively.The curves𝐻 and𝐻𝑜𝑚
touch the boundary 𝜕𝑆 = {(𝜖1, 𝜖2, 𝜖3) : 𝜖1 = 0, 𝜖22 + 𝜖23 = 𝜎̃2}
at the points 𝐵𝑇− and 𝐵𝑇+. In the neighborhood of 𝐵𝑇−
and 𝐵𝑇+, one can find the unfolding of the cusp singularity
of codimension 2. System (77) has a unique unstable limit
cycle when the parameters lie between𝐻 and𝐻𝑜𝑚 in a small
neighborhood of 𝐵𝑇−, and it has a unique stable limit cycle
when the parameters lie between 𝐻 and 𝐻𝑜𝑚 in a small
neighborhood of 𝐵𝑇+. Inside the curved triangle 𝐶ℎ2 ℎ𝑜𝑚2,
the system has two limit cycles: the inner one is unstable and
the outer one is stable.These two limit cycles coalesce at 𝑆𝑁𝑙𝑐,
where there exists a unique semi-stable limit cycle.

Remark 18. Together, Theorems 15–17 allow us to assert that
themodel will undergo a Bogdanov-Takens bifurcation at the
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endemic equilibrium when the conditions (57) and 𝑐20 ̸= 0
are met. The codimension of the bifurcation can be further
determined by calculating the coefficient 𝑐11 (𝐸∗ is a cusp of
codimension 2 when 𝑐11 ̸= 0 and codimension 3 otherwise).
All coefficients for the normal forms computed in this section
can be expressed in terms of the original parameters of
the model via a chain of substitutions (see formulas (67)
and (59)); however, the resulting expressions would be too
unwieldy to be useful. In practice, these coefficients can
be calculated by numerical software packages like Matcont,
which implement the computation of normal forms coeffi-
cients by more efficient methods based on combining the
approximation of the center manifold with the normalization
on it and using the Fredholm Alternative. Matcont also uses
orthogonal collocation for the discretization of periodic and
homoclinic orbits. For homoclinic orbits, it also uses the
Lindstedt–Poincaré method to achieve a better rendering of
these orbits compared to the regular perturbation method
[22, 23].Therefore, the analytical results developed here serve
as the theoretical foundations, which is the mathematically
solid part that gives support to what is calculated by numeri-
cal simulation software.

In this section and the previous one, we described the
lengthy procedure required in order to compute the coeffi-
cients of the normal forms for the Hopf and codimension
2 and 3 Bogdanov-Takens bifurcations. In the next section,
their numerical value will be actually obtained providing a
set of numerical values of all the parameters involved in the
model.

7. Numerical Continuation and Simulations

In this section, wewill illustrate the analytical results obtained
in the previous sections by performing numerical contin-
uation of equilibria and numerical simulations. We will
use the Matcont package [24] to carry out the numerical
continuation of equilibria in order to obtain bifurcation
curves of system (6) for different sets of parameters and locate
points of interest like the codimension 2 BT points and the
approximate location of a codimension 3 BT point. Matcont
also allows us to perform the numerical continuation of
limit cycles and homoclinic orbits. For some scenarios, the
corresponding phase portraits will be plotted.The coefficients
of the corresponding normal forms are also provided by
Matcont, complementing the description of the long chain of
substitutions carried out in the previous two sections in order
to compute the numerical values of such coefficients.

Example 1. We consider first system (6) with the parameters
from Table 1 and choose 𝛽 as a bifurcation parameter. Using
numerical software, we can compute the endemic equilibria(𝑆∗, 𝐼∗) of the system as 𝛽 is varied and check that the
function𝐻 defined inTheorem 14 has a positive root𝛽0 = 0.5
(see Figure 4(a)). Similarly, it is readily seen that (43) and (46)
hold for 𝛽 = 𝛽0. Hence, all hypotheses ofTheorem 14 aremet,
which implies that themodel undergoes aHopf bifurcation at𝛽 = 0.5. Since the coefficient Γ = 5.867238 × 10−4 is positive,
the bifurcation is subcritical. The bifurcation diagram shown

in Figure 4(b) reveals that, when 𝛽 > 0.5, there is a unique
limit cycle (represented by green curves in the diagram),
which is stable. As 𝛽 becomes less than 0.5, an unstable
limit cycle (blue curves in the diagram) appears around the
endemic equilibrium 𝐸∗. When 𝛽 is further reduced to 0.43,
the two limit cycles collide and disappear via a double limit
cycle bifurcation. The phase portrait of the system when 𝛽 =0.52 can be seen in Figure 5: in this case, 𝐸∗ is unstable and
all solutions approach the unique limit cycle. If we change 𝛽
to 0.48, the endemic equilibrium becomes stable, and we can
see that there are two limit cycles (Figure 6).

With these parameters, we also get the bifurcation dia-
gram in the (𝛽, 𝐼) plane shown in Figure 7. Note that𝜂 = 10.8264 > 0, implying that there is a backward
bifurcation at 𝐸0 when 𝛽 = 0.258, and for this value of the
bifurcation parameter we have 𝑅0 = 1. This is labeled as
BP (branching point), the point where the unstable endemic
equilibrium meets the disease-free equilibrium 𝐸0. The red
dotted curve corresponds to that unstable equilibrium point,
which coalesces with the stable endemic equilibrium at LP
(limit point, where a saddle-node bifurcation takes place).
The continuous blue curve describes the movement of the
stable endemic equilibrium as 𝛽 increases from 𝛽 = 0.0563,
where 𝑅0 = 𝑅∗ = 0.2175. The label 𝑅0 = 1 on that curve
indicates that 𝑅0 > 1 after this point as we move along the
blue curve. Label H indicates a subcritical Hopf bifurcation
at that point on the blue curve, which occurs at 𝛽 = 0.5. As
Figure 4(b) shows, the outer stable limit cycle and the inner
unstable limit cycle meet at 𝛽 = 0.43 and disappear for 𝛽
less than this critical value (saddle-node bifurcation of limit
cycles). Associatedwith point labeledH, (𝛽, 𝜆) = (0.5, 23.5) is
the corresponding point in the 𝛽, 𝜆 bifurcation graph shown
in Figure 8.

Example 2. If we fix the parameters 𝑟 = 10, 𝐾 = 100,𝛼 = 0.01, Θ = 2.3, 𝜀 = 0.5 and let both 𝛽 and 𝜆
vary, we can see by an application of Theorem 15 that one
of the endemic equilibria undergoes a Bogdanov-Takens
bifurcation at (𝛽, 𝜆) = (0.2232, 103.5794) (denoted by 𝐵𝑇+)
and at (𝛽, 𝜆) = (4.6697, 464.8865) (denoted by 𝐵𝑇−). The
corresponding normal form coefficients 𝑐20 and 𝑐11, as defined
in Section 6, can be computed numerically, and we obtain(𝑐20, 𝑐11) = (7.333133 × 10−1, 9.012544 × 10−2) at 𝐵𝑇+ and(𝑐20, 𝑐11) = (9.839525 × 10−1, −4.559214) at 𝐵𝑇−. Since the
coefficients are nonzero, this implies that both BT points are
cusps of codimension 2.

If we plot the bifurcation curves on the (𝛽, 𝜆) plane,
we obtain the diagram shown in Figure 8. Near the 𝐵𝑇+
point, we can see a saddle-node bifurcation curve and a
subcritical Hopf bifurcation curve (Figure 9(a)). The saddle-
node bifurcation (magenta line) and neutral saddle curves
(green line) connect the two Bogdanov-Takens points. Near𝐵𝑇−, there exists also a supercritical Hopf bifurcation curve
(Figure 9(b)).

Example 3. We will now plot the bifurcation curves on the(𝛽, 𝜆) plane for different values of 𝜀, the other parameters
being the same as in Example 2. Figure 10 shows the
corresponding saddle-node bifurcation curves for 𝜀 taking
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Figure 4: (a) Graph of𝐻 as a function of 𝛽: a Hopf bifurcation occurs at the point where𝐻 changes sign. (b) Hopf bifurcation diagram of
the system, showing the size of the stable (green) and unstable (blue) limit cycles that coalesce and disappear as 𝛽 is varied.

0 10 20 30 40 50 60 70 80 90 100
0

10
20
30
40
50
60
70
80
90

100

S

I

Figure 5: Phase portrait of the system when there exists a stable limit cycle, which lies in the junction of the magenta and green lines.
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Figure 6: Phase portrait of the system when there are two limit cycles: the outer one is stable and the inner one is unstable.

several values between 0.5 and 0.0916. We can see that the
two BT points get closer to each other as 𝜀 decreases, and
they coalesce and become a BT point of codimension 3 at the
critical value (which is approximately 𝜀 = 0.0916), as stated
inTheorem 17. At such point, the normal form coefficient 𝑐11
vanishes, while the other coefficients become approximately𝑐20 = 8.5 × 10−1 and 𝐸 = 6.2 × 10−2.

If we fix the parameters 𝜀 = 0.0916 and 𝜆 = 90,
then a supercritical Hopf bifurcation occurs as 𝛽 is varied.
Figure 11(a) shows the phase portrait of the system when𝛽 = 0.95 and the endemic equilibrium is stable. When we
increase the value of 𝛽 to 0.97, the endemic equilibrium loses

its stability and a stable limit cycle appears around it, as we
can see in Figure 11(b).

Example 4. In the following set of figures, the dynamics
near the 𝐵𝑇+ point shown in Figures 8 and 9(a) will be
analyzed in close detail. Figure 12 shows a 3D bifurcation
diagram that includes Figures 7 and 9(a). The axes are the
control parameters 𝛽 and 𝜆 used to locate the Bogdanov-
Takens points, as well as 𝐼, the infected population. Note
that the graph of Figure 7 is embedded in the vertical slice
with the constant value of 𝜆 = 23.5 because this curve is
generated varying only 𝛽 and keeping thementioned value of
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Figure 8: Bifurcation diagram on the (𝛽, 𝜆) plane.The blue (yellow)
curve represents subcritical (supercritical) Hopf bifurcation, the
magenta curve represents saddle-node bifurcation, and the green
curve is a neutral saddle curve.

𝜆 constant. The region displayed is the one surrounding the𝐵𝑇+ point. BP−R1 is the bifurcation point where the unstable
endemic equilibrium meets the disease-free equilibrium. R1
denotes that here 𝑅0 = 1, as it also occurs at the other points
with this label along the bifurcation curves.

Example 5. Figure 13 shows the same region as Figure 12, but
including the information of the homoclinic orbits arising
from the BT bifurcation point. This information is shown
as a blue vertical plane surface following the path of the
homoclinic bifurcation curve in the 𝛽 - 𝜆 parameter plane.
The vertical coordinate in this surface shows the varying
values of the state variable 𝐼 in the homoclinic orbits.
Figure 14 depicts the same region in the𝛽 -𝜆 parameter space,
but the coordinate axes are 𝜆, 𝑆, and 𝐼 now.This graph allows
us to notice the homoclinic orbits stacked as vertical slices
of a 3D surface starting at the BT bifurcation point, partially
obscured by this surface. The vertical slices are generated as
we travel along the homoclinic bifurcation curve in the 𝛽 - 𝜆
parameter space.

The homoclinic bifurcation curve is displayed as the
brown curve starting at the BT bifurcation point and to
the left of the Hopf bifurcation curve of this BT point in
Figure 15, a 2D figure displaying the region in 𝛽 - 𝜆 parameter
space. This curve intersects the neutral saddle curve. At this
parameter space point, the saddle point at the end of the
corresponding homoclinic orbit is a neutral saddle.The curve
ends at the other BT point that is not displayed in this
picture. This curve is displayed until its intersection with the

Table 1: Values for the parameters used in simulations.

Parameter Value𝑟 10𝐾 100𝛼 0.01Θ 2.3𝜆 23.5𝜀 0.5

Hopf bifurcation curve. Note that at this point is where the
backward bifurcation takes place (the endemic saddle point
and the disease-free equilibrium collide here) and 𝑅0 = 1.
Given that the homoclinic orbits corresponding to the part
of this curve from a little bit before the intersection with
the neutral saddle curve to its intersection with the Hopf
bifurcation curve are packed very close together, they are not
displayed in Figures 13, 14, and 15 in order to make them
clearer. In the remaining part of the curve that is not displayed
and that goes almost parallel to the Hopf bifurcation curve,
the curve crosses a region of the parameter space where 𝑅0
is equal to 1 or is very close to 1, and the corresponding
homoclinic orbits are extremely close together; therefore they
are also not displayed in Figures 13, 14, and 15. In Figure 15,
the green curve is the saddle-node bifurcation curve. Note
that in the left part of this green curve is the cusp bifurcation
point also displayed in Figure 9(a). The magenta curve is
the Hopf bifurcation and neutral saddle curve. The part of
it starting from the BT point and to the right of the (brown)
homoclinic bifurcation curve is the Hopf part, and the other
part starting to the left of the BT point is the neutral saddle
part, which was also displayed as a green curve in Figure 9(a).
This part intersects the Hopf part as we travel from the BT
point, but this intersection does not mean that the neutral
saddle equilibrium point is colliding with a Hopf bifurcation
point (this is evident in Figure 12). The correct interpretation
of this intersection is that for this particular value of the pair(𝛽, 𝜆) there are a Hopf bifurcation point and a neutral saddle
equilibrium point, but both located at different points in the𝑆 - 𝐼 state space. Figure 15 also displays the graph of Figure 7
as the horizontal blue curve with constant 𝜆 = 23.5.

Figure 16 is a 2D plot with coordinates 𝑆, 𝐼 that also
depicts the same region. The curves shown in this picture
are the paths of the corresponding equilibrium points (bifur-
cation curves) as 𝛽 and 𝜆 vary in parameter space. The
blue region shows the graphs of the homoclinic curves as
the control parameters 𝛽 and 𝜆 vary. In the case of the
graph of Figure 7 included here (the curve in aquamarine
and red colors), 𝜆 has a fixed value of 23.5 and 𝛽 varies.
The aquamarine part is the path of the stable endemic
equilibrium, and the red part is the path of the unstable
endemic equilibrium. The points labeled as R1 denote when𝑅0 = 1. The point (𝑆, 𝐼) = (100, 0) is at the same time a
branching point and labeled as R1. A cusp point along the
green curve 𝑆𝑁+ is very close to that point; hence a CP
label is also there. In all the previous figures mentioned in
this analysis, all the remaining parameters are fixed with the
values given in Table 1.
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Figure 9: Zoom-in on the bifurcation diagram near the Bogdanov-Takens points. (a) 𝐵𝑇+. (b) 𝐵𝑇−.
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Figure 10: Saddle-node bifurcation curves for different values of 𝜀. Each curve contains two Bogdanov-Takens points (BT) and two cusp
bifurcation points (CP). (a) Sequence of curves as 𝜀 varies from 0.5 to 0.0916. (b) Curve for 𝜀 = 0.0916.

50 60 70 80 90 10040
S

0

2

4

6

8

10

12

I

(a)

50 100959085807570656055
S

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

I

(b)

Figure 11: Phase portrait of the system near the BT point of codimension 3 when a supercritical Hopf bifurcation occurs. In (a), the endemic
equilibrium is stable. In (b), the endemic equilibrium is unstable and there is a stable limit cycle.
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Figure 13: Bifurcation diagram in the (𝛽, 𝜆, 𝐼) space showing the
homoclinic orbits that emerge from the Bogdanov-Takens point.

Figures 17, 18, and 19 display phase planes in three
different scenarios. The first one (Figure 17) corresponds to
a point near the end of the homoclinic bifurcation curve,
with (𝛽, 𝜆) = (0.29380822, 68.660854). Note that there is one
homoclinic orbit separating the green solution that departs
from very close to it towards a stable endemic equilibrium
point and the blue solutions elsewhere. Figure 18 corresponds
to (𝛽, 𝜆) = (0.3, 68.660854), a point located the in 𝛽
- 𝜆 parameter space between the homoclinic bifurcation
point and the Hopf bifurcation point. The green solution
emanates from very close to an unstable limit cycle andwraps
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Figure 14: Bifurcation diagram in the (𝜆, 𝑆, 𝐼) space showing the
homoclinic orbits that emerge from the Bogdanov-Takens point.

around towards a stable endemic equilibriumpoint. Solutions
parting from outside the limit cycle are depicted in magenta.
Solutions elsewhere are depicted in blue. Finally, Figure 19
has (𝛽, 𝜆) = (0.4, 68.660854), a point located in the 𝛽 - 𝜆
parameter space to the right of the Hopf bifurcation point.
Note the stability change of the previously stable endemic
equilibrium point. All green solutions depicted diverge from
this unstable endemic equilibrium point and there is no
longer an unstable limit cycle. All remaining solutions are
depicted in blue. Hence, the Hopf bifurcation is subcritical
as we move from the scenario of Figure 18 to the scenario
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Figure 15: Bifurcation diagram near the BT point.The brown curve
shows homoclinic bifurcation, the green curve shows saddle-node
bifurcation, and the magenta curve shows the Hopf bifurcation and
neutral saddle curves.

of Figure 19. In all these Figures 17–19, there are two other
equilibria: the disease-free equilibrium, which is always a
stable node, and an unstable endemic equilibrium point,
which is a saddle point. Note that 𝑅0 < 1 for the three
scenarios, and case (3) of Theorem 2 holds here.

8. Conclusions

We generalized the SIR epidemic model with logistic growth
andHolling type II treatment studied in [4] by studying a new
model with a nonlinear saturated force of infection.

We proved that the local stability of the disease-free
equilibrium depends only on the basic reproduction number𝑅0: the DFE is stable when 𝑅0 < 1 and unstable when𝑅0 > 1. Our model may present a backward bifurcation
under certain conditions, which implies that it may not be
enough to reduce 𝑅0 below unity in order to obtain the
global asymptotic stability of the DFE. Theorem 11 shows
that the disease is expected to become extinct when the
basic reproduction number is sufficiently low, which can be
achieved by decreasing the parameter 𝛽 or increasing 𝜆. This
implies that, just like inmany other epidemicmodels, there is
a threshold value for 𝑅0 that guarantees the eradication of the
disease, although this value becomes smaller and hence more
difficult to achieve for epidemic control strategies due to the
bifurcation dynamics.

We showed that, when 𝑅0 > 1, there is a unique endemic
equilibrium, whose stability depends on inequalities (42) and
(43). Our results indicate that the behavior of the model
around endemic equilibria can become very complicated
since variations in the parameters may induce different types
of bifurcation.

As the disease transmission rate 𝛽 increases, our model
undergoes a Hopf bifurcation under certain conditions, and
both stable and unstable periodic solutions may emerge
around an endemic equilibrium. When both 𝛽 and the treat-
ment parameter𝜆 are varied, a BTbifurcation of codimension
2 or 3 may occur. The use of numerical software can help
us to corroborate our analytical results and to detect other
types of complicated dynamics, such as cusp bifurcation and
generalized Hopf bifurcation (see the points labeled CP and
GH in Figure 8). The use of different 2D and 3D bifurcation

diagrams allowed us to describe in some detail different
aspects of the complicated dynamics due to the interplay of
the nonlinear force of infection with a nonlinear treatment
term. 𝛽 and 𝜆 play an important role as control parameters
to detect the codimension 2 BT bifurcation points, and
adding 𝜀 as an additional control parameter was required
to locate the approximate position of the codimension 3
BT bifurcation point by running several times the required
Matcont numerical routines used to locate the codimension
2 BT points, each run with a different fixed value of 𝜀
in a decreasing sequence until it disappears (Figure 10).
Several phase portraits were also included to show some
of the different scenarios that arise due to these complex
dynamics.

As it happens with other epidemic models studied in
the literature, such as [4], we can see that the nonlinear
force of infection is an important factor that can lead to
complex dynamics. It is noteworthy that our model has a
similar mathematical structure to other models that arise in
different application areas. For example, the predator–prey
model studied in [6] is similar to (6) except that the saturated
function 𝛽𝑆𝐼/(1+𝛼𝐼)would be replaced with 𝛽𝑆𝐼/(𝛼+𝑆) and𝛽1𝑆𝐼/(𝛼 + 𝑆) in the first and second equations of the system,
respectively, and is interpreted as a Holling type II functional
response. The authors in [6] studied the dynamics of that
model and found the existence of Hopf and BT bifurcations,
but only up to codimension 2. Another predator–prey model
related to this is the one studied in [7], which uses the
bilinear functional response𝛽𝑆𝐼 and presents similarly varied
dynamics. Our analysis for model (6) went further to explore
the existence of codimension 3 BT bifurcation, which shows
that our model may represent a more drastic variation of the
population dynamics.

Given that the final purpose of our model is to eradicate
the disease, it will be useful as long as it allows us to provide
an effective control strategy. The numerical experiments
performed in the previous section give us a hint of how
to achieve this goal. From all the parameters of the model,
we identified 𝛽, 𝜆, and 𝜀 as suitable control parameters.
Varying 𝜀 has an effect to modify the separation of the two
codimension 2𝐵𝑇 bifurcation points and it also has some role
in modifying the saddle-node bifurcation curve, as Figure 10
shows. This bifurcation curve is very important towards an
effective disease control strategy. This is evident by noting
that the disease dies out in the region of the 𝛽 - 𝜆 plane
to the left of the SN bifurcation curve because solutions
converge to the disease-free equilibriumpoint as 𝑡 tends to∞.
Hence, parameters 𝛽 and 𝜆 have a major role in controlling
the disease. Parameter 𝛽 can be modified by implementing
isolation strategies like quarantine or asking people to stay at
home for as long as possible or avoiding public spaces in order
to minimize exposure to infected individuals. The parameter𝜆measures the effectiveness of the treatment as the power of
themedicines used to treat the infected individuals, and 𝜀 can
be considered to be related to medicine availability. Hence,
since the other parameters are related to the population, such
as growth and mortality rates (natural and disease-induced),
population carrying capacity, and disease recovery rate, they
can be considered fixed and are determined by the disease
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and population susceptible to it, and thus the remaining
parameters are the three previously considered as control
parameters.

Therefore, the steps towards an effective control strategy
are as follows: First, determine the population and disease-
related parameters and set a value for 𝜀 according to treatment
availability. Then, perform the numerical continuation of
equilibria using Matcont to obtain the saddle-node bifur-
cation curve, and finally, choose a feasible pair of 𝛽 and𝜆 such that the corresponding point in the 𝛽 - 𝜆 plane
lies to the left of the 𝑆𝑁 bifurcation curve. Note that if
for some reason it is not possible to choose suitable values
of 𝛽 and 𝜆 that lay there, the numerical continuation of
equilibria provided byMatcont can give us information about
the long term behavior of the disease given a known initial
population of susceptible and infected individuals. In some
cases, such as the ones depicted in Figures 17 and 18, we
can choose values of 𝛽 and 𝜆 such that 𝑅0 < 1 and there
are two endemic equilibria (one stable and one unstable),
so the positive quadrant R2+ of the plane is divided into
two regions by the stable manifold of the saddle endemic
equilibrium. If our initial point lies between the unstable
endemic equilibrium and the DFE, it could lay in the basin of
attraction of the disease-free equilibrium and the disease will
die out. In order to achieve this, the values of 𝛽 and 𝜆 should
make the endemic equilibria to be as close to each other as
possible.

For other values of the parameters, periodic solutions
of the system may appear around endemic equilibria (see,
for example, Figures 5 and 11(b)). The existence of stable
limit cycles in certain regions of the 𝛽 - 𝜆 - 𝜀 parameter
space can provide theoretical explanations for the appear-
ance of periodic outbreaks of a disease (or oscillatory
dynamics and coexistence of predator and prey popula-
tions, in the case where the system is interpreted as a
predator–prey model). Numerical and theoretical analysis
of the different types of bifurcations allows us to show
that small variations in the model parameters can trigger
a significant change in the long-term behavior of the sub-
populations under study in both epidemic and ecological
models.
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