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Abstract In this paper we give a generalization of the Conze–Guivarc’h limit set.
With this definition the limit set has very similar properties to those of the limit set in
hyperbolic spaces. Moreover, we prove a relation between this new limit set and the
Kulkarni limit set. Additionallywe show that some closed subsets can be approximated
by the Conze–Guivarc’h limit set. This is a result in the theory of classic Kleinian
groups.
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1 Introduction

The discrete subgroups of PSL(2, C) acting on the sphere S
2 with non-empty region

of discontinuity are known as Kleinian groups. One of the objects to study within this
action is the limit set. A point x is a limit point for the Kleinian group G if there is a
point z ∈ S

2 and a sequence (gm) of distinct elements of G with gm(z) → x . The set
of limit points is called the limit set, denoted by �(G).

On the other hand, complex Kleinian groups were introduced by Seade and Ver-
jovsky as discrete subgroups G of PGL(n + 1, C) acting properly discontinuously on
some non-empty G-invariant open subset of the n-th dimensional complexprojective
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space Pn
C
. Since the beginning of the study of these subgroups, the limit set that has

been considered is the one defined by Kulkarni (1978). Roughly speaking, he took into
account not only the closure of accumulation points of orbits of elements in Pn

C
but

also the accumulation points of orbits of compact sets. We denote this set by �K (G)

and call it the Kulkarni limit set. See Sect. 2.5 for the definition.
It is shown in Barrera et al. (2011), that under some hypothesis, the Kulkarni limit

set of a subgroup G of PSL(3, C) is made up of projective lines, for example when G
is a discrete infinite group without global fixed points nor invariant complex projective
lines (see Barrera et al. 2011, Theorem 1.3). There are also another technical criteria
to guarantee that the Kulkarni limit set is a union of complex projective lines. For
example, Theorem 1.2 in Barrera et al. (2011) requires that the Kulkarni limit set and
another set contain at least three complex projective lines.

A classical result in projective geometry is the natural identification of P2
C
and the

dual projective space (P2
C
)∗. The dual space (P2

C
)∗ can be considered as the space

consisting of all complex projective lines in P2
C
and the complex projective line �,

with equation Ax + By + Cz = 0, is identified with the point [A : B : C] ∈ P2
C
.

Under this identification, the natural action of g ∈ PSL(3, C) on the space of
complex projective lines (P2

C
)∗ is given by

g · � ←→ (g−1)T

⎛
⎝
A
B
C

⎞
⎠ ,

where g denotes a matrix in SL(3, C) which induces the projective transformation g.
Finally, when F is a subset of (P2

C
)∗ we denote, by abuse of notation,

⋃
�∈F

�

the subset of P2
C
obtained as the union of all the lines (considered as subsets of P2

C
)

determined by the elements in F .
In Conze and Guivarc’h (2000) the authors give a definition of limit set for the

action of a group on a linear space. They consider the closure of attracting fixed points
of proximal elements in the group (an element is called proximal whenever it has an
eigenvalue with modulus strictly greater than the modulus of all other eigenvalues).
Every proximal element is a loxodromic element according to the classification given
in Navarrete (2008), but the converse is not true. On the other hand, not every subgroup
of PSL(3, C) contains proximal elements, so we define the limit set L̂(G) of a group
G acting on (P2

C
)∗ (see Definition 6), even if G does not contain proximal elements.

This limit set L̂(G) has similar properties to those of the limit set of the subgroups of
PSL(2, C), and we present them in Corollaries 1, 2 and 3.

In the following theorem, we show a relation between the limit set L̂(G) ofG acting
on (P2

C
)∗ and the Kulkarni limit set �K (G) of G acting on P2

C
.

Theorem 1 Let G ≤ PSL(3, C) be an infinite discrete subgroup acting on P2
C
without

fixed points nor invariant lines. Let L̂(G) be the limit set (according to Definition 6)
of G acting on (P2

C
)∗, then
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�K (G) =
⋃

�∈L̂(G)

�.

In order to prove Theorem 1, we compare two sets in (P2
C
)∗: the effective lines

E(G), (see Sect. 2.8), and the limit set L̂(G) in (P2
C
)∗, (see Definition 5). We prove

that this two sets are equal, and because under the hypothesis of Theorem1, the identity⋃
�∈E(G) � = �K (G) is satisfied. This equality implies the result.
It is a well known result, that given a closed nowhere dense subset of S

2, there is
a Kleinian group G ⊂ PSL(2, C) such that C ⊂ �(G). Moreover, �(G) is nowhere
dense and C is close (in some way) to �(G) (see Bernard 1988, VIII, A.7.).

A generalization of this result is obtained in the following way: If F ⊂ (P2
C
)∗ is

a closed set such that
⋃

�∈F � �= P2
C
then there is a complex Kleinian group G ⊂

PSL(3, C) which is conjugate to a subgroup of PU(2, 1) such that �K (G) ⊃ ⋃
�∈F �.

In fact, since
⋃

�∈F � is a proper closed subset of P2
C
, we can choose a ball B contained

in P2
C
\⋃

�∈F � and a subgroup G preserving the ball B which is conjugate to a lattice
of PU(2, 1), then

�K (G) = P2
C
\B ⊃

⋃
�∈F

�,

where the equality above, is obtained as a consequence of the main Theorem in Navar-
rete (2006).

We remark that in this generalization, the limit set �K (G) has non-empty interior,
so it is not necessarily close to

⋃
�∈F �. The following theorem is a more faithful

generalization of the classical result.

Theorem 2 Given ε > 0 and a closed subset C ⊂ (P2
R
)∗ such that C has at least

three points in general position and
⋃

�∈C � �= P2
C
, then there is a complex Kleinian

group Gε , such that the Hausdorff distance between L̂(Gε) and C is smaller than ε.

The outline of the proof is: given a closed subset C ∈ (P2
R
)∗, there is a finite set F

with an even pair of elements such that the Hausdorff distance dH (F,C) < ε/2. Then
we show that there is a family of Schottky type groups Gε ⊂ PSL(3, R) such that the
Hausdorff distance dH (L̂(Gε), F) < ε/2 and this implies that dH (L̂(Gε),C) < ε.

It is shown that
⋃

�∈L̂(Gε )
� �= P2

C
, and by Theorem 1, the Kulkarni limit set and⋃

�∈L̂(Gε )
� coincide.

2 Preliminaries

2.1 The Complex Projective Plane

The complex projective plane P2
C
is defined as the equivalence classes of the following

equivalence relation in C
3\{(0, 0, 0)}: for (x, y, z), (u, v, w) ∈ C

3\{(0, 0, 0)},

(x, y, z) ∼ (u, v, w) ⇐⇒ (u, v, w) = α(x, y, z) for some α ∈ C\{0}.
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P2
C
is a 2-dimensional complex compact connected manifold. We denote by [ ] :

C
3\{(0, 0, 0)} → P2

C
the canonical projection, so we write [x] = [x : y : z] for its

corresponding projection to P2
C
, whenever x = (x, y, z). For the standard basis ofC

3 :
B = {e1, e2, e3} we write its projection [ej] as ej for j = 1, 2, 3.

We will say that � ⊂ P2
C
is a complex projective line or line, for short, if the inverse

image of the projection [�]−1 ∪ {(0, 0, 0)} is a 2-dimensional complex subspace of
C
3. Whenever p and q are points in P2

C
, we will denote the line through them as ←→p,q.

2.2 The Space of Lines of the Complex Projective Plane, (P2
C
)∗

The space (P2
C
)∗ is the space of complex projective lines � ⊂ P2

C
. This space can be

identified with the complex projective plane P2
C
as follows: the complex projective

line � with equation Ax + By +Cz = 0 is identified with the point [A : B : C] ∈ P2
C
,

and sometimes we write � = [A : B : C], by abuse of notation.

2.3 PSL(3,C) and its Action on P2
C
and (P2

C
)∗

The transformations of P2
C
are the elements in PSL(3, C) where

PSL(3, C) = SL(3, C)�{Id, ωId, ω2Id},

being {1, ω, ω2} the cubic roots of unity and SL(3, C) the group of 3 × 3-matrices
with determinant equal one. PSL(3, C) is a Lie group that acts transitively, faithfully
and by biholomorphisms on P2

C
. The action is given as follows:

g · [x] = [g(x)], (1)

with x ∈ C
3\{(0, 0, 0)} and g ∈ SL(3, C).

An action of the elements in PSL(3, C) can be also defined in the space of complex
projective lines, (P2

C
)∗: If � = [A : B : C] ∈ (P2

C
)∗, and g ∈ PSL(3, C) then

g · � = (g−1)T

⎛
⎝
A
B
C

⎞
⎠ . (2)

2.4 Pseudo-Projective Transformations

Throughout this paperFwill denote eitherR orC, unless otherwise stated. IfM3×3(F)

is the space of 3 × 3-matrices with entries in F equipped with the standard topology,
the quotient space (

M3×3(F)\{0̄}) � (F\{0}) , (3)

is the space of pseudo-projective maps of P2
F
. It is naturally identified with the projec-

tive spaceP8
F
.M3×3(F)\{0̄} is a compactification of the open denseF

∗-invariant subset
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GL(3, F), and the space of pseudo-projective transformations is a compactification of
PSL(3, F).

If s ∈ M3×3(F), then [s] denotes the equivalence class of the matrix s in the
space of pseudo-projective transformations of P2

F
. And if S is a pseudo-projective

transformation, a lift of S will be a matrix s ∈ M3×3(F)\{0̄} whenever [s] = S.
The lift of a pseudo-projective transformation S induces a non-zero linear trans-

formation s : F
3 → F

3 which is not necessarily invertible. Let Ker(s) � F
3 be its

kernel and Ker(S) := [Ker(s)] its projectivization in P2
F
. If Ker(s) = {(0, 0, 0)}, then

Ker(S) := ∅.

2.5 Complex Kleinian Groups

In Kulkarni (1978), the author defined a limit set for a group acting on very general
topological spaces. His definition was used in this theory since its origin. We use the
definition of limit set specifically for subgroups of PSL(3, C) acting on P2

C
.

Let G be a subgroup of PSL(3, C), we introduce three closed G-invariant subsets
of P2

C
.

L0(G) the closure of points in P2
C
with infinite isotropy group,

L1(G) the closure of accumulation points of the orbits of points in P2
C
\L0(G),

L2(G) the closure of accumulation points ofG-orbits of compact subsets contained
in P2

C
− (L0(G) ∪ L1(G)).

Definition 1 The union L0(G)∪ L1(G)∪ L2(G) will be called the Kulkarni limit set
and it is denoted �K (G). The complement of this union �K (G) := P2

C
− �K (G) is

the discontinuity region of G.

We say that G is a complex Kleinian group whenever �K (G) �= ∅.

Proposition 1 Let G be a subgroup of PSL(3, C) acting in P2
C
. G equipped with the

compact-open topology. Then L0(G), L1(G), L2(G),�K (G),�K (G)areG-invariant
and the action of G is properly discontinuous on �K (G).

It has also been proved in Barrera et al. (2011) that when G acts on P2
C
without

fixed points nor invariant lines, �K (G) is the maximal open subset where the action
is properly discontinuous.

Notation When G = 〈g〉 is a cyclic group, we write L0(g) for L0(G), �K (g) for
�K (G), etc.

2.6 Kulkarni Limit Set of Elements in PSL(3,C)

The transformations of PSL(3, C) are classified as elliptic, parabolic or loxodromic
elements. If an element of PSL(3, C) is in any of these classes, there are specific
Jordan canonical forms that the element might have. Navarrete (2008) studied this
classification and the Kulkarni limit set for the canonical forms that different elements
in PSL(3, C) can have.
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We can find in (Navarrete 2008, Proposition 4.3) that an element g ∈ PSL(3, C) is
elliptic if and only if g has a lift g ∈ SL(3, C) such that g is diagonalizable and every
eigenvalue is an unitary complex number.

Therefore if an element of PSL(3, C) is elliptic, its lift g to SL(3, C) is conjugate
to the next matrix:

h =
⎛
⎝
e2π iα 0 0
0 e2π iβ 0
0 0 e2π iγ

⎞
⎠ , (4)

where either h has finite or infinite order.

Remark 1 It is proved in (Navarrete 2008, Proposition 4.7) that when h has finite order
the Kulkarni limit set is empty, and when it has infinite order, the Kulkarni limit set is
P2
C
.

Analogously, an element in PSL(3, C) is parabolic if the Kulkarni limit set is equal
to a single complex line. There are three different types of lift for a parabolic element:

f1 =
⎛
⎝
1 1 0
0 1 0
0 0 1

⎞
⎠ , f2 =

⎛
⎝
1 1 0
0 1 1
0 0 1

⎞
⎠ , f3 =

⎛
⎝
e2π i t 1 0
0 e2π i t 0
0 0 e−4π i t

⎞
⎠ , (5)

with e2π i t �= 1.

Remark 2 In (Navarrete 2008, Proposition 5.4) it is shown that the Kulkarni limit set
�K (f1) is the line consisting of all the fixed points of f1,

←−→e1, e3. The Kulkarni limit
set of �K (f2) is the unique f2-invariant complex line ←−→e1, e2, and �K (f3) is the line
determined by the two fixed points, ←−→e1, e3.

While for loxodromic elements, we can say that g ∈ PSL(3, C) is loxodromic if
and only if g has a lift g ∈ SL(3, C) with at least two eigenvalues of different module,
(Navarrete 2008, Proposition 6.7). The lift that a loxodromic element can have is one
of the four matrices below, when λ and μ are complex numbers different from zero.

g1 =
⎛
⎝

λ 0 0
0 λ 0
0 0 λ−2

⎞
⎠ , g2 =

⎛
⎝

λ 0 0
0 μ 0
0 0 (λμ)−1

⎞
⎠ , g3 =

⎛
⎝

λ 1 0
0 λ 0
0 0 λ−2

⎞
⎠ , g4 =

⎛
⎝

λ1 0 0
0 λ2 0
0 0 λ3

⎞
⎠ .

|λ| �= 1 λ �= μ |λ| �= 1 |λ1| < |λ2| < |λ3|
|λ| = |μ| �= 1 λ1, λ2, λ3 ∈ C.

(6)

Remark 3 In different propositions in (Navarrete 2008, Section 6) the author proves
which is the Kulkarni limit set in each case. The transformation g1 is called complex
homothety and�K (g1) is {e3}∪←−→e1, e2. The transformation g2 is called screw, its limit
set is �K (g2) = {e3} ∪ ←−→e1, e2. For g3, called loxoparabolic, the limit set is the line
where the transformation acts as a parabolic element �K (g3) = ←−→e1, e2 ∪ ←−→e1, e3. For
the last transformation, a strongly loxodromic element, �K (g4) = ←−→e1, e2 ∪ ←−→e2, e3,
the complex lines determined by the repelling and saddle point and the attracting and
saddle point.
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2.7 Schottky Type Groups and the Conze–Guivarc’h Limit Set

Schottky groups are very useful groups for showing many different properties of the
limit sets of groups acting on spaces.

We work with a type of groups introduced by Tits in (1972). Conze and Guiv-
arc’h (2000) pick up the definition of Schottky type group and they study the ergodic
properties of the limit set denoted by L(G) that we now know as the Conze and
Guivarc’h limit set.

The main difference with the classical Schottky groups is that in this case we do
not ask the transformations to pair the circles in a way that the exterior of a compact
set is sent exactly to the interior of another compact subset, it is enough for the image
to be contained in the interior of the other compact subset.

Definition 2 Let (X, δ) be a complete metric space. A group 
 of homeomorphisms
of X , generated by a finite symmetric set � (namely, a−1 ∈ � for all a ∈ �) is called
a group of Schottky type if there exists {Ca}a∈� a family of compact subsets of X , and
a point p ∈ X such that p /∈ ∪a∈�Ca and a(p) ∈ Ca for all a ∈ �, and the following
conditions are satisfied:

(1) for a, b ∈ �, Ca ∩ Cb = ∅ if a �= b;
(2) for a, b ∈ �, a(Cb) ⊂ I nt (Ca), except when ab = e;
(3) for all sequences {an} such that an �= a−1

n+1 for all n > 1, the diameter of
a1a2 · · · an(Can+1) tends to zero, when n tends to infinity.

The fact that there is a point p outside every compact set together with property (2)
of the previous definition guarantee that the group generated by � is free and discrete
(Conze and Guivarc’h 2000, Proposition 5.2).

In the context of Schottky type groups there is a definition of a convex set, used in
Conze and Guivarc’h (2000):

Definition 3 A closed subset C of P2
F
is said to be convex if it is contained in the

complement of a projective hyperplane H and it is convex as a subset of the affine
space P2

F
− H .

Following Conze and Guivarc’h (2000), and for making the notation easier, we
introduce the next definition.

Notation We will say that a set of homeomorphisms of a metric space X satisfies
condition (S+) if items (1) and (2) of Definition 2 are satisfied.

Definition 4 A matrix A ∈ GL(3, F) is said to be proximal if it has one and only one
eigenvalue with modulus larger than the modulus of all the other eigenvalues. We will
call that eigenvalue as λA.

For a proximal matrix A, the vector vA ∈ F
3 will denote the corresponding eigen-

vector to the eigenvalue λA, and is called the dominant eigenvector of A.

123



268 W. Barrera et al.

Proposition 2 Let A be a proximal transformation, being λA the eigenvalue of A with
greater norm than the other eigenvalues. We define

H−
A = {ω ∈ C

3 : λ−n
A Anω → 0 as n → ∞}.

Let S be the pseudo-projective limit of the positive powers of A. Then

Ker(S) = [H−
A ],

where [H−
A ] denotes the projectivization of the vector subspace H−

A .

Proof Let A be as g4 in Eq. (6). Then

S =
⎛
⎝
0 0 0
0 0 0
0 0 1

⎞
⎠ .

The kernel of S, is Ker(S) =
⎧⎨
⎩

⎛
⎝
x
y
0

⎞
⎠ : x, y ∈ C

⎫⎬
⎭ . Now,

H−
A =

⎧⎨
⎩ω =

⎛
⎝
x
y
z

⎞
⎠ : λ−n

3 Anω → 0

⎫⎬
⎭ .

λ−n
3 Anω = λ−n

3

⎛
⎝

λn1x
λn2 y
λn3z

⎞
⎠ =

⎛
⎜⎝

(
λ1
λ3

)n
x(

λ2
λ3

)n
y

z

⎞
⎟⎠ .

Then it is clear that

Ker(S) ⊂ H−
A .

And because dim(Ker(S)) = dim(H−
A ) = 2, we conclude that Ker(S) = H−

A .

There are other possibilities for A to be a proximal transformation, for example, if
A is either as g1 or g3 in Eq. (6) with |λ| < 1. It is not hard to check the Proposition
2 is still true for different types of proximal elements. ��

For the reader’s convenience we give a brief introduction to the limit set presented
in Conze and Guivarc’h (2000). Also, we provide useful examples in order to compare
the limit set of Conze and Guivarc’h and the limit set in the sense of Kulkarni.

We restate the Propositions 5.9 and 5.10 of Conze and Guivarc’h (2000).

Proposition 3 Let �̂ be a family of pairs {(a,Ca)|a ∈ �}where� is a set of projective
transformations and a ∈ � with eigenvector a+ ∈ Ca associated to the greatest
eigenvalue and where Ca are disjoint compact convex sets such that [H−

b ] ∩ Ca = ∅
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if b �= a−1. Then for all sufficiently large n the family �̂n = {(an,Ca)|a ∈ �} satisfies
condition (S+).

Moreover, under the same hypothesis if the family �̂ satisfies condition (S+), then
condition (3) as in Definition 2 also holds.

Remark 4 If b is a proximal element and S is a pseudo-projective limit of the positive
powers of b, then [H−

b ] = [Ker(S)]. And the condition [H−
b ] ∩ Ca �= ∅ in the

Proposition 3 can be restated as [Ker(S)] ∩ Ca �= ∅.

According to the classification of transformations of PSL(3, C) given in Navarrete
(2008), can be deduced that a proximal transformation is loxodromic, but the converse
is not true. Moreover, every proximal element has an attracting fixed point in P2

F
, then

we have the following definition.

Definition 5 (Conze and Guivarc’h limit set) Let G be a subgroup of GL(3, F) and
consider its action onP2

F
.We denote by L(G) the closure of the subset ofP2

F
consisting

of all the attracting fixed points of proximal elements of G.

We emphasize that L(G) is always a G-invariant subset of P2
F
and when the G-

action is irreducible (i.e it does not exist any proper subspace of P2
F
invariant under

the action of a subgroup of finite index in G) and when G has a proximal element,
then L(G) is a minimal subset for this G-action.

Example 1 Consider the strongly loxodromic transformation g4 in Eq. (6) acting on
P2
C
. The Kulkarni limit set is �K (g4) = ←−→e1, e2 ∪ ←−→e2, e3, (Remark 3). It is not hard to

check that L(g4) is equal to {e1, e3}.
Observe that L(g4) ⊂ L0(g4) ⊂ �K (g4). The action of G on P2

C
− L(g4) is not

properly discontinuous, while the action of G on P2
C

− �K (g4) is.

2.8 Two Sets of Lines

In the article Barrera et al. (2016), the authors introduced the concept of effective
lines of a discrete group G. First, if G ′ is the set {S pseudo-projective map of P2

C
:

S is a cluster point of G}, then E(G) ⊂ (P2
C
)∗ is the set {� ⊂ P2

C
: � =

Ker(S), for some S ∈ G ′} where � is a complex line in P2
C
.

In Barrera et al. (2011), the authors introduce the set E(G) as the subset of (P2
C
)∗

consisting of all the complex lines � for which there exists an element g ∈ G such that
� ⊂ �K (g).

We prove the following proposition:

Proposition 4 Let G be a discrete subgroup of PSL(3, C), with at least three lines in
general position in E(G). Then

E(G) = E(G). (7)

Proof First we prove E(G) ⊂ E(G). Let � be a line in E(G), then there is an element
g ∈ G such that � ⊂ �K (g). Each line in the Kulkarni limit set is the kernel of the
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pseudo-projective transformation obtained as the limit of gn or g−n , with n ∈ N. It
follows that E(G) ⊂ E(G) because E(G) is closed, (Barrera et al. 2016, Proposition
4.2).

Conversely, let � ∈ E(G), then � = Ker(S) where S = limn→∞ gn , for some
sequence (gn) ⊂ G. Take �0 ⊂ �K (g0) a line in E(G) not passing through the point
Im(S). By (Barrera et al. 2011, Lemma 3.2(3)) the sequence g−1

n · �0 converges to
Ker(S) = �, where for each n ∈ N, g−1

n · �0 ⊂ �K (g−1
n g0gn) is in E(G). ��

3 The Limit Set in (P2
C
)∗

In this section we extend the Definition 4 to work with every type of elements in
PSL(3, C). We propose the following definition.

Definition 6 Let us consider G ⊂ PSL(3, C) acting on (P2
C
)∗. We say that q ∈ (P2

C
)∗

is a limit point of G if there exists an open subset U ⊂ (P2
C
)∗ and there exists a

sequence {gn} ⊂ G, gn �= gm if n �= m, such that for every p ∈ U

lim
n→∞ gn · p = q (8)

The set of limit points will be called the limit set, denoted by L̂(G).

Example 2 If g ∈ PSL(3, C) is a strongly loxodromic element, then without loss of
generality we can assume that g is induced by the matrix g4 in Eq. (6).

When we consider the element g acting in (P2
C
)∗ we notice that the complex lines

�1 = {[x : y : z] ∈ P2
C

: x = 0},
�2 = {[x : y : z] ∈ P2

C
: y = 0},

�3 = {[x : y : z] ∈ P2
C

: z = 0},
correspond to the eigenvectors of

(g−1)T =
⎛
⎜⎝

1
λ1

0 0
0 1

λ2
0

0 0 1
λ3

⎞
⎟⎠ .

Hence, �1, �2, �3 are the fixed points for the action of g on (P2
C
)∗. In fact, �1 is an

attracting fixed point, because for every η ∈ U1 = (P2
C
)∗\←−→

�2, �3, gn · η → �1 as

n → ∞; and �3 is a repelling fixed point because for every η ∈ U3 = (P2
C
)∗\←−→

�1, �2,

g−n · η → �1 as n → ∞. Where
←−→
�j, �k denotes the projective line passing through

the points �j, �k ∈ (P2
C
)∗.

Therefore, �1 and �3 are the only limit points, according to Definition 6, for the
cyclic group generated by g, and it is not hard to check that

�K (g) = �1 ∪ �3 =
⋃

�∈L̂(g)

�.
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Lemma 1 If G = 〈g〉 ⊂ PSL(3, C) is a cyclic subgroup then:

(i) �K (G) = ⋃
�∈L̂(G)

� whenever g is neither a complex homothety nor a screw.
(ii) If g is either a complex homothety or a screw then �K (G) �

⋃
�∈L̂(G)

�.

Proof It is enough to verify the Lemma for the elements of different type, see Sect.
2.6.

(i) If g ∈ PSL(3, C) is a loxoparabolic transformation, g has a lift in SL(3, C) whose
Jordan canonical form is given by the matrix g3 in Eq. (6). g acts in (P2

C
)∗ as we

said in Eq. (2).
For any [A : B : C] in the open subset U1 of (P2

C
)∗, where

U1 = {[A : B : C] ∈ (P2
C
)∗ : A �= 0}, (9)

and for the sequence {gn}n∈N, the sequence of lines in (P2
C
)∗ given by

(
g−n)T

⎛
⎝
A
B
C

⎞
⎠ =

⎛
⎝

λ−n 0 0
−nλ−(n+1) λ−n 0

0 0 λ2n

⎞
⎠

⎛
⎝
A
B
C

⎞
⎠ (10)

is projectively the same as the sequence

λn+1

n

(
g−n)T

⎛
⎝
A
B
C

⎞
⎠ =

⎛
⎝

λ
n A−A + λ

n B
λ3n+1

n C

⎞
⎠ , (11)

and this last sequence converges to the line given by [0 : 1 : 0].
Now, take the action of g−1 in (P2

C
)∗ and letU3 be the open subset of (P2

C
)∗ defined

by {[A : B : C] ∈ (P2
C
)∗ : C �= 0}. The sequence of lines in (P2

C
)∗ given by:

(
gn

)T
⎛
⎝
A
B
C

⎞
⎠ =

⎛
⎝

λn 0 0
nλn−1 λn 0

0 0 λ−2n

⎞
⎠

⎛
⎝
A
B
C

⎞
⎠ (12)

is projectively equivalent to the sequence:

λ2n
(
gn

)T
⎛
⎝
A
B
C

⎞
⎠ =

⎛
⎝

λ3n A
nλ3n−1A + λ3n B

C

⎞
⎠ , (13)

converges to the line [0 : 0 : 1], whenever [A : B : C] is in U3.
So L̂(G) = {�2, �3}, therefore, the lemma is true for loxoparabolic elements.
For the other elements whose canonical Jordan forms are defined in Sect. 2.6, the
analysis is very similar to the previous and we summarize it in the Table:
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g
ac
tin

g
in

P
2 C

�
K

(g
)

g
ac
tin

g
in

(P
2 C
)∗

L̂
(g

)
O
pe
n
su
bs
et

L
ox

od
ro
m
ic
el
em

en
ts

L
ox

op
ar
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ol
ic
g

=
⎛ ⎝λ

1
0

0
λ

0
0

0
λ
−2

⎞ ⎠
←→ e 1
e 2

∪←
→

e 1
e 3

(g
−1

)T
=

⎛ ⎝
λ
−1

0
0

−λ
−2

λ
−1

0
0

0
λ
2

⎞ ⎠
{� 2

,
�
3
}

U
1
an
d
U
3
re
sp
.

|λ|
>

1

St
ro
ng

ly
lo
xo

dr
om

ic
g

=
⎛ ⎝λ
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0

λ
2

0
0

0
λ
3
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→

e 2
e 3

(g
−1

)T
=

⎛ ⎜ ⎝λ
−1 1

0
0

0
λ
−1 2

0
0

0
λ
−1 3

⎞ ⎟ ⎠
{� 1
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�
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}
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1
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1
0
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0
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1

0
0

−1
1

0
0

0
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{� 2
}

U
1
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⎛ ⎝1
1

0
0

1
1

0
0

1⎞ ⎠
←→ e 1
e 2

(g
−1

)T
=

⎛ ⎝
1

0
0

−1
1

0
1

−1
1⎞ ⎠

{� 3
}

U
1

g
=

⎛ ⎝e2
π
it

1
0

0
e2

π
it

0
0

0
e−

4π
it

⎞ ⎠
e−

2π
it

�=
1

←→ e 1
e 3

(g
−1

)T
=

⎛ ⎝
e−

2π
it

0
0

−e
−4

π
it

e−
2π

it
0

0
0

e4
π
it
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{� 2

}
U
1

E
lli
pt
ic
el
em

en
ts

g
=

⎛ ⎝ei
θ 1

0
0

0
ei

θ 2
0

0
0

ei
θ 3
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P
2 C

(g
−1

)T
=

⎛ ⎝e−
iθ
1

0
0

0
e−

iθ
2

0
0

0
e−

iθ
3

⎞ ⎠
(P

2 C
)∗

(P
2 C
)∗

g
=

⎛ ⎝ei
θ 1

0
0

0
ei

θ 2
0

0
0

ei
θ 3

⎞ ⎠
g
ha
s
fin

ite
or
de
r

∅
(g

−1
)T

=
⎛ ⎝e−

iθ
1

0
0

0
e−

iθ
2

0
0

0
e−

iθ
3

⎞ ⎠
∅
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(ii) If g ∈ PSL(3, C) is a screw, then we can assume that g is induced by a matrix of
the form g2 in Eq. (6).
It is not hard to check that gn ·� → �3 as n → ∞ for every � ∈ U3, so L̂(g) = {�3}.
It follows, from Sect. 2.6, that �K (g) = ←−→e1, e2 ∪ {e3}. Hence

⋃

�∈L̂(g)

� � �K (G).

The case when g is a complex homothety is analogous to the previous one and we
omit it. ��
If G is a discrete subgroup of PSL(3, C), we recall that E(G) denotes the set of

complex lines, �, for which there exists a sequence (gn) ⊂ G of distinct elements
such that gn converges to the pseudo-projective transformation S as n → ∞, and
� = Ker(S).

Proposition 5 If G ⊂ PSL(3, C) is a discrete subgroup then

E(G) = L̂(G).

Proof Let � be in E(G), thus there exists a sequence of distinct elements (gn) ⊂ G
and a pseudo-projective transformation S, such that gn → S as n → ∞ uniformly
on compact subsets of P2

C
\Ker(S) = P2

C
\�. By (Barrera et al. 2011, Lemma 3.2), we

can assume that there exists R pseudo-projective transformation, such that g−1
n → R

as n → ∞ uniformly on compact subsets of P2
C
\Ker(R). Moreover, if η is a complex

line in the open setU = {η ∈ (P2
C
)∗ : Im(S) does not lie on η} then g−1

n ·η → Ker(S)

as n → ∞.
Conversely, let � = [A : B : C] ∈ L̂(G), so there is a non-empty open set

U ⊂ (P2
C
)∗ such that gn · η → � as n → ∞ for every η ∈ U . If we use (Barrera et al.

2011, Lemma 3.2) for the sequence of projective transformations [(g−1
n )T ], we obtain

a pseudo-projective transformation S such that

[(g−1
n )T ] → S as n → ∞ uniformly on compact subsets of P2

C
\Ker(S). (14)

Moreover, the hypothesis that all lines η in the non-empty open set U satisfy that
gn · η → � as n → ∞ imply that Im(S) consists of one point. In fact, Im(S) = {[A :
B : C]}, so we can write S = [s], where

s =
⎛
⎝

λA μA νA
λB μB νB
λC μC νC

⎞
⎠ , where |λ| + |μ| + |ν| �= 0.

It follows from (14) that

g−1
n = [g−1

n ] → S′ = [sT ] as n → ∞ uniformly on compact subsets of P2
C
\Ker(S′).

Moreover, Ker(S′) = [Ker(sT )] = {[x : y : z]|Ax + By + Cz = 0} = �. ��
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Corollary 1 If G ⊂ PSL(3, C) is a discrete subgroup then L̂(G) ⊂ (P2
C
)∗ is a closed

set.

Proof The Proposition 5 implies that L̂(G) = E(G), and (Barrera et al. 2016, Propo-
sition 4.2) states that E(G) ⊂ (P2

C
)∗ is closed. ��

Corollary 2 Let G be a discrete subgroup of PSL(3, C), and H subgroup of G, with
[G : H ] < ∞. Then L̂(H) = L̂(G).

Proof It is not hard to check that L̂(H) ⊂ L̂(G). Let � ∈ L̂(G). Since
L̂(G) = E(G), there exists a sequence (gn) ⊂ G such that gn → S, S a pseudo-
projective transformation, and Ker(S) = �. As [G : H ] < ∞, there exists a ∈ G and
(hn) ⊂ H , with hn �= hm whenever n �= m. With out loss of generality gn = ahn . If
R = limn→∞ hn , then Ker(R) = Ker(S), this implies that E(H) = L̂(H). ��
Corollary 3 (Properties of limit set L̂(G)) Let G be a discrete subgroup of PSL(3, C).
Assume that G acts in P2

C
without global fixed points nor invariant lines, and L̂(G)

contains at least four elements, then:

(i) L̂(G) is a perfect set and it is the minimal closed set for the action of G on (P2
C
)∗.

(ii) The G-orbit of any η ∈ L̂(G) is dense in L̂(G).
(iii) L̂(G) is the closure of the set of loxodromic fixed points, and if there are parabolic

elements in G, then L̂(G) is the closure of the set of parabolic fixed points as
well.

(iv) L̂(G) = (P2
C
)∗ or it has empty interior.

Proof First, we prove (i). The Proposition 5 implies L̂(G) = E(G), and Proposition
4 together with (Barrera et al. 2011, Theorem 1.3 (c)) implies the result.

The proof of (ii) and (iii) is a consequence of the minimality of L̂(G).
Now, we prove (iv). We notice that

Eq(G) = P2
C
\

⋃
�∈E(G)

� = P2
C
\

⋃

�∈L̂(G)

�,

where the first equality is obtained by (Barrera et al. 2016, Corollary 4.5), and the sec-
ond is obtained by Proposition 5 above. By applying (Barrera et al. 2016, Proposition
4.10) we see that there exists a loxodromic element in G.

Let us assume that U is a non-empty open subset of L̂(G). By (iii), there exists
� ∈ U where � is an attracting fixed line for a loxodromic g0 ∈ G. If ∅ �= W is an
open set contained in (P2

C
)∗\L̂(G) then there is η ∈ W such that gn0 · η ∈ U for all n

large enough. This is a contradiction to the fact that L̂(G) is G-invariant. ��
Having proved the properties of L̂(G) we can state the next theorem.

Theorem 1 Let G ≤ PSL(3, C) be an infinite discrete subgroup acting in P2
C
without

fixed points nor invariant lines. Let L̂(G) be the limit set of G acting on (P2
C
)∗, then

�K (G) =
⋃

�∈L̂(G)

�.
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Proof First we observe that �K (G) = P2
C
\Eq(G) by (Barrera et al. 2011, Theorem

1.3 (a)). ThenP2
C
\Eq(G) = ⋃

�∈E(G) �, by (Barrera et al. 2016, Corollary 4.5). Finally,
by Proposition 5,

⋃
�∈E(G) � = ⋃

�∈L̂(G)
�. ��

In the following example we present a group 
 with parabolic elements in which
L̂(
) is identified with the classical limit set � for discrete subgroups of PU(2, 1)
acting in H2

C
.

Example 3 In Gusevskii and Parker (2003) the authors give a type-preserving rep-
resentation ρ of the group PSL(2, Z) in PU(2, 1). The image under ρ of the two
generators of 
 = PSL(2, Z) generate a discrete subgroup in PU(2, 1), ρ(
). In
Navarrete (2006), the author shows that the Kulkarni limit set of ρ(
) is the set:

�K (
) =
⋃
x∈�

�x ,

where �x is a tangent line to ∂H2
C
in x .

Now, by Theorem 1, we show that L̂(
) = {�x ∈ (P2
C
)∗ : x ∈ �}.

4 Building the Subgroup Acting on (P2
C
)∗

Given (X, d) a metric space, it is well known that the collection of compact subsets
of X has a distance called the Hausdorff distance. For the convenience of the reader
we recall the definition of this distance.

dH (A, B) = inf{r > 0|A ⊂ Br and B ⊂ Ar }, (15)

where A and B are compact subsets of X and Ar = {x ∈ X : d(x, A) < r} is the
r -neighborhood of A.

Lemma 2 Given η, μ, ν ∈ P2
F
, there exists g ∈ PSL(3, F) strongly loxodromic trans-

formation satisfying the following:

(i) η,μ and ν are fixed lines for g and L̂(g) = {η,μ}.
(ii) For all neighborhood W such that W ⊂ P2

F
\←→μ, ν, and any neighborhood U of

η, exists N ∈ N such that gn · W ⊂ U for n > N .

(iii) For all neighborhood W such that W ⊂ P2
F
\←→η, ν, and any neighborhood V of

μ, exists N ∈ N such that g−n · W ⊂ V for n > N .

The proof of this Lemma follows from (Barrera et al. 2011, Lemma 3.2).

Remark 5 Let η and μ be elements in (P2
F
)∗, and let F be a finite subset of (P2

F
)∗.

Then, there exists ε > 0 and a ν ∈ (P2
F
)∗ such that ←→η, ν does not intersect the balls

with radio ε and center in F ∪ {μ}. And ←→ν, μ does not intersect the closure of the balls
with radio ε and center in F ∪ {η}.

The next lemma illustrates the construction of the group of Gε of Theorem 2, for
the particular case when the closed subset C ⊂ (P2

R
)∗ consists of four points.
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Lemma 3 Given F = {η1, μ1, η2, μ2} ⊂ (P2
R
)∗, and ε > 0, there exists a Schottky

type group Gε such that
dH (L̂(Gε), F) < ε (16)

Proof Consider ε > 0. Let Ui and Vi balls with center ηi and μi , respectively, and
radio 0 < ε′ ≤ ε such that the U1,U2, V1, V2 are pairwise disjoint. Using Remark 5
there exists ε1 > 0 and a ν1 ∈ (P2

R
)∗ such that ←−→η1, ν1 does not intersect the closure of

the balls with radio ε1 and center in {η2, μ2}∪ {μ1}. And ←−→ν1, μ1 does not intersect the
closure of the balls with radio ε1 and center in {η2, μ2} ∪ {η1}.

Analogously, there exists ε2 > 0 and a ν2 ∈ (P2
R
)∗ such that ←−→η2, ν2 does not

intersect the balls with radio ε2 and center in {η1, μ1} ∪ μ2. And
←−→ν2, μ2 does not

intersect the closure of the balls with radio ε2 and center in {η1, μ1} ∪ {η2}. We take
ε3 = min{ε′, ε1, ε2}.

Applying Lemma 2, there are strongly loxodromic transformations
g1, g2 ∈ PSL(3, R) such that ηi , μi , νi are fixed points for the transformation gi
for i = 1, 2 and L̂(gi ) = {ηi , μi }. Also, for every open subset W such that
W ⊂ (P2

R
)∗\←−→μi, νi and any neighborhood Ui of ηi there exists Ni ∈ N such that

for n > Ni , gni · W ⊂ Ui . Also for every open subset W such that W ⊂ (P2
R
)∗\←−→ηi, νi

and any neighborhood Vi ifμi there existsMi ∈ N such that for n > Mi , g
−n
i ·W ⊂ Vi ,

i = 1, 2. In particular, if we takeUi and Vi as balls with radio ε3, we have the hypoth-
esis of Proposition 3. So, for N = max{N1, N2, M1, M2}, the group Gε = 〈gN1 , gN2 〉
is a Schottky type group. As F ⊂ L̂(Gε) and L̂(Gε) ⊂ ⋃

f ∈F B( f, ε3), it is not hard

to check that dH (L̂(Gε), F) < ε3 < ε. ��
Lemma 4 Given F a finite subset of points in (P2

F
)∗ and ε > 0, there exists a Schottky

type group Gε such that
dH (L̂(Gε), F) < ε (17)

The proof of this lemma is analogous to the proof of Lemma 3.

Lemma 5 Let C be a closed subset of (P2
F
)∗ such that

⋃
�∈C � �= P2

F
. Then there

exists ε > 0 such that Cε = {� ∈ (P2
F
)∗ : d(�,C) ≤ ε}, satisfies ⋃

�∈Cε
� �= P2

F
.

Proof Let p be a point in P2
F
\⋃

�∈C �, then there is a line L in (P2
F
)∗ such that

L ∩ C = ∅ and p ∈ ⋃
�∈L �. Then there exists ε > 0 satisfying Nε(C) ∩ L = ∅.

Therefore, p is in P2
F
\⋃

�∈Nε (C) �. ��
Now, we begin with the proof of Theorem 2.

Theorem 2 Given ε > 0 and a closed subset C ⊂ (P2
R
)∗ such that C has at least

three points in general position and
⋃

�∈C � �= P2
C
, there is a complex Kleinian group

Gε , such that the Hausdorff distance between L̂(Gε) and C is smaller than ε.

Proof Consider ε > 0. With out loss of generality, we choose F finite subset of C
such that F has three points in general position and

dH (F,C) < ε/2. (18)
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By Lemma 4 there exists a Schottky type group Gε such that

dH (L̂(Gε), F) < ε/2. (19)

From Eqs. (18) and (19) we have

dH (L̂(Gε),C) < ε.

By Lemma 5, for any small enough ε we have the equality

P2
C

�=
⋃

�∈L̂(Gε )

�.

And by Theorem 1, �K (Gε) = ⋃
�∈L̂(Gε )

�. ��
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